
A biologically plausible implementation of
error-backpropagation for classification tasks

Arjen van Ooyena, Pieter R. Roelfsemab

aNetherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands
bNetherlands Ophthalmic Research Institute, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands

A.van.Ooyen@nih.knaw.nl P.Roelfsema@ioi.knaw.nl

In: Kaynak, O., Alpaydin, E., Oja, E., Xu,
L. (eds.) Artificial Neural Networks and Neu-
ral Information Processing - Supplementary Pro-
ceedings ICANN/ICONIP 2003, Istanbul, Turkey,
June, pp. 442-444.

Error-backpropagation is a powerful
method to train neural networks, but its
current implementations lack biological
realism. Here we present a novel scheme
for implementing error-backpropagation in
a biologically plausible way. Our scheme,
called attention-gated reinforcement learn-
ing (AGREL), uses an ”attentional”
feedback signal to gate the plasticity of
connections to hidden units. We show that
the average changes in connection weights
in AGREL are the same as the changes in
weights in error-backpropagation.

We study a classification task with P input pat-
terns that are classified into C mutually exclusive
classes. The network that has to learn this classi-
fication is composed of N input units, M hidden
units, and C output units (Fig. 1). The target
output for input pattern p is tp, a vector in which
all output units k have target activity 0 except
the unit that encodes the target class for pattern
p, unit k = cp, which has target activity 1. In-
put patterns are applied to the input layer, and
the activity of the hidden units, Y p

j , is computed
using the logistic activation function:

Y p
j =

1
1 + exp(−hp

j )
(1)

with

hp
j =

N∑

i=0

vijX
p
i (2)

where v0j is the bias of unit j (X0 always equals
1).

In the version of the backpropagation algorithm
that is commonly used for classification problems

with mutually exclusive classes [1], the activity
of the output units, Zp

k , is computed using the
softmax activation function:

Zp
k =

exp(ap
k)∑C

k′=1 exp(ap
k′)

(3)

with

ap
k =

M∑

j=0

wjkY p
j (4)

where w0k is the bias of unit k (Y0 always equals
1). The natural error function for these classifi-
cation problems is the cross-entropy function for
multiple classes [1], in which the error in the out-
put for pattern p is defined as

Qp = −
C∑

k=1

tpk ln Zp
k (5)

where tpk is the target output for unit k, to be
provided by a ”teacher”; tpcp

= 1, and tpk = 0 for
k 6= cp. Connection weights are updated accord-
ing to the gradient of the error surface. For the
weights from the hidden to the output layer,

∆wjk = −β
∂Qp

∂wjk
= −β

∂ap
k

∂wjk

∂Qp

∂ap
k

= −βY p
j

C∑

k′=1

∂Qp

∂Zp
k′

∂Zp
k′

∂ap
k

= βY p
j (tpk − Zp

k) (6)

where β is a parameter that determines the learn-
ing rate. For the weights from the input to the
hidden layer,

∆vij = −β
∂Qp

∂vij
= −β

∂hp
j

∂vij

∂Qp

∂hp
j

= −βXp
i

C∑

k=1

∂Qp

∂ap
k

∂ap
k

∂hp
j

= βXp
i Y p

j (1− Y p
j )

C∑

k=1

(tpk − Zp
k)wjk (7)
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Figure 1: The three-layered network of AGREL.
Feedback connections w′kj from the output to the
hidden layer gate the plasticity of the connections
vij from the input to the hidden layer.

Updating according to these rules is biologi-
cally implausible, for two reasons. First, updating
of the weights between the input and the hidden
layer depends on wjk and Zp

k , information that is
not locally available at the connection. Second, in
each round of updating, a teacher has to provide
the correct response tpk for each output unit.

In our new scheme, attention-gated reinforce-
ment learning (AGREL), the activity in the out-
put layer is determined by a winner-take-all rule.
The winning output unit has activity 1, and the
others are inactive. The softmax rule is used to
determine the winning unit, whereby the total in-
put ap

k to a unit determines the probability that
it will win the competition:

Pr(Zp
k = 1) =

exp(ap
k)∑C

k′=1 exp(ap
k′)

(8)

with

ap
k =

M∑

j=0

wjkY p
j (9)

In AGREL, as in other reinforcement learning
schemes, evaluative feedback in the form of reward
controls the changes in the connection weights.
We assume, without loss of generality, that the
amount r of reward received after correct classi-
fication equals 1, and that no reward is obtained
in case of misclassification. With these choices,
the average amount of reward expected with input
pattern p is Pr(Zp

cp
= 1), the probability that the

correct output unit wins the competition. Sup-
pose that, with input pattern p, output unit k
has won the competition (Zp

k = 1) and that this
is the correct classification; i.e., k = cp and r = 1.
The difference δ between the amount of reward
obtained and the average amount of reward ex-
pected is then broadcasted to all the units of the
network:

δ = 1− Pr(Zp
cp

= 1) (10)

If another output unit, k 6= cp , is selected, and
therefore no reward is obtained, we take δ = −1.
The signal δ could be implemented as a diffusible
messenger such as dopamine [2].

The change in the weights wjk from the hidden
to the output layer depends on Zp

k , Y p
j , and δ,

information that is locally available:

∆wjk = βY p
j Zp

kf(δ) (11)

where β is a parameter that determines the learn-
ing rate and f(δ) is an expansive function that
causes large weight changes for values of δ that
are close to 1:

f(δ) =
{

δ/(1− δ) δ ≥ 0
δ δ < 0 (12)

Thus, in each trial, only the connections to the
output unit that has won the competition are up-
dated, since for the other output units Zp

k = 0.
By combining Eqs. (10) through (12), we can

compute the average change in the weights wjk.
Pattern p is correctly classified with probability
Pr(Zp

cp
= 1), and the average change in the con-

nection weights wjcp across trials equals

E(∆wjcp) = Pr(Zp
cp

= 1)βY p
j

δ

1− δ

= βY p
j

[
tpcp

− Pr(Zp
cp

= 1)
]

(13)

An erroneous output unit k 6= cp is selected with
probability Pr(Zp

k = 1), and the average change
in the connection weights wjk is

E(∆wjk) = Pr(Zp
k = 1)βY p

j δ

= βY p
j [tpk − Pr(Zp

k = 1)] (14)

Comparison of Eqs. (13) and (14) with Eq. (6)
shows that the average changes in weights in
AGREL are the same as the changes in weights
in error-backpropagation. Note that Pr(Zp

k = 1)
and Pr(Zp

cp
= 1) in AGREL are equal to, respec-

tively, Zp
k and Zp

cp
in error-backpropagation.

The plasticity of the weights vij from the input
to the hidden layer is gated by feedback of the win-
ning unit through weights w′kj , which approximate
the weights wjk of the feedforward connections.
This feedback signal is physiologically plausible,
since sensory neurons in the cortex receive atten-
tional feedback when the object to which they re-
spond is selected for action [3-5]. Changes in vij

are determined by Xp
i , Y p

j , δ, and the amount
of feedback received from the output layer, all of
which are locally available:

∆vij = βXp
i Y p

j (1− Y p
j )f(δ)w′sj (15)



where w′sj is the strength of the feedback connec-
tion from the winning unit s in the output layer
to unit j in the hidden layer.

Each connection weight vij is updated both
when input pattern p is correctly classified and
when it is not. The average change in the connec-
tion weights vij across trials equals

E(∆vij) =

Pr(Zp
cp

= 1)βXp
i Y p

j (1− Y p
j )

δ

1− δ
w′cpj

−
∑

k 6=cp

Pr(Zp
k = 1)βXp

i Y p
j (1− Y p

j )w′kj

= βXp
i Y p

j (1− Y p
j )

C∑

k=1

[tpk − Pr(Zp
k = 1)] w′kj

(16)

Equation (16) is equivalent to Eq. (7). The plas-
ticity of the feedback connections w′kj is also gov-
erned by Eq. (11), and this maintains the equiv-
alence of the weights of the feedforward and feed-
back connections.

In conclusion, we have shown that the error-
backpropagation algorithm for classification
tasks can be implemented as a reinforcement
learning scheme. Various other schemes for
implementing error-backpropagation in a more
biologically plausible way have been proposed
in the literature, including a second network for
the error signals [6, 7], recirculation of activity
in a recurrent network [8, 9], and two separate
neuronal sites for the activity and the error
signal [10]. However, in all these schemes, as in
standard error-backpropagation, a biologically
implausible teacher remains necessary to provide
the correct output. In AGREL, as in other
reinforcement learning schemes, it is not revealed
how the network should have responded when
the output of the network is wrong; the correct
output is found by trial and error. AGREL is
also superior to previous reinforcement learning
schemes [11, 12], which are not as efficient as
error-backpropagation in specifying how the con-
nections to hidden units should be optimized. In
AGREL, this so-called credit assignment problem
is solved by the introduction of an attentional
feedback signal. The combination of rein-
forcement learning and attentional feedback has
yielded a learning scheme that changes connection
weights just as standard error-backpropagation,
but in a biologically plausible way.
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