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Abstract

A variety of stochastic models of dendritic growth in developing neurons have been formulated previously. Such models indicate
that the probability of a new branch forming in a growing tree may be modulated by factors such as the number of terminals in the
tree and their centrifugal order. However, these models cannot identify any underlying biophysical mechanisms that may cause such
dependencies. Here, we explore a new model in which branching depends on the concentration of a branch-determining substance in
each terminal segment. The substance is produced in the cell body and is transported by active transport and diffusion to the
terminals. The model reveals that transport-limited effects may give rise to the same modulation of branching as indicated by the

stochastic models. Different limitations arise if transport is dominated by active transport or by diffusion.

© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the major distinguishing features of neurons is
their morphology. Thin branches (neurites) extending
from the cell body form the sites of input and output
from a neuron. The branches known as dendrites are the
major sites of input and form trees with topologically
and geometrically characteristic branching patterns for
different neuronal types. Dendritic trees can be classified
according to the number of terminals, the symmetry of
the tree, and the lengths, diameters and branching
angles of intermediate segments between branch points
and terminal segments (Hillman, 1979; van Pelt and
Uylings, 1999).
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Dendritic morphology arises during development
from the elongation and branching of neurites. Growth
cones at the tips of developing neurites determine the
direction of neurite extension and if and when a neurite
branches. Rates of elongation and branching are
determined both by the external environment and by
the internal state of the neurite. Whether or not a
branching event occurs is influenced by the state of the
actin and microtubule cytoskeletons. Branching firstly
involves the splitting of the growth cone, including a
rearrangement of its actin cytoskeleton. The new
branches are eventually stabilized by the formation of
rigid microtubule bundles in the trailing neurite and into
the growth cones. Rho proteins regulate rearrangement
of the actin cytoskeleton in response to internal and
external signals (Acebes and Ferrus, 2000; Redmond
and Ghosh, 2001; Whitford et al., 2002). The stability of
microtubule bundles is regulated by microtubule-
associated proteins (MAPs) (Maccioni and Cambiazo,
1995; Kobayashi and Mundel, 1998). Phosphorylation
of MAPs destabilizes the microtubule bundles and
has been correlated with increased neurite branching
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(Audesirk et al., 1997). Many other factors also
influence neurite outgrowth and branching, including
calcium entry through membrane-bound ion channels
and synaptic and intrinsic electrical activity (Cline,
2001).

Remarkably, simple models of dendritic growth that
describe elongation and branching as stochastic pro-
cesses are sufficient to generate the topological and
metrical features from a wide range of neuronal tree
types (van Pelt et al., 1997; van Pelt and Uylings, 1999;
Dityatev et al., 1995; Uemura et al., 1995; Nowakowski
et al., 1992; Carriquiry et al., 1991). As described above,
the actual dendritic growth process is highly complex,
leading to the apparently stochastic nature of elongation
and branching (van Pelt and Uylings, 1999). These
statistical models of tree growth do not directly identify
the underlying biophysical processes involved in den-
dritic development. As a consequence they give little
insight into how a neuron’s intracellular environment
and its interaction with other neurons and the extra-
cellular space influences its morphological development.
The particular biophysical differences in growth be-
tween different neuronal types are not identified. New
models that incorporate biophysically identifiable para-
meters and processes are needed to address these issues.

To develop such models, we use as a starting point the
statistical models that describe dendritic tree develop-
ment as a stochastic growth process in time. The most
parsimonious of these is the BESTL model of van Pelt
and coworkers (van Pelt et al., 1997; van Pelt and
Uylings, 1999). Their model contains a small number of
parameters that can be tuned to reproduce certain
characteristics of the trees from a large number of
neuronal types. In particular, the model reproduces the
branching structure of a dendritic tree, which is
described in terms of the number of terminal segments
(degree) and their centrifugal order (the number of
branch points between the terminal and the root of the
tree). It does not seek to reproduce dendritic growth in
3D space. Nonetheless, the statistics of degree and
centrifugal order distributions is sufficient to distinguish
the trees of different neuronal types. Intriguingly, this
model indicates that the branching process that gen-
erates the dendritic tree is modulated by the total
number of terminals in the growing tree and their
centrifugal order. It is an open question as to the
biophysical processes that may produce these depen-
dencies.

Here we introduce a new model that indicates such
dependencies may arise from intracellular transport-
limited effects if branching in part depends on a
substance that is produced in the cell body and is
transported by active transport and diffusion to the tree
terminals. Branching is influenced by the ability of the
internal cytoskeleton to be remodelled to form new
neurite branches. Limiting factors here include the

availability of cytoskeletal proteins, such as tubulin,
and the stability of the existing cytoskeleton. Conse-
quently, possible candidates for the role of “branch
determining substance” include tubulin and microtu-
bule-associated proteins (MAPs). Tubulin is required at
neurite tips for the assembly of microtubules, resulting
in neurite elongation and the possible formation of new
branches. Microtubule construction and stability are
influenced by MAPs. Dendritic branching has been
correlated with the phosphorylation state of MAP2
(Audesirk et al., 1997). Other branch determining
substances include factors that effect the stability of
the actin network in the growth cone, such as Rho
proteins. Whichever the actual substance, we investigate
here how the interactions between production, transport
and consumption of such a substance affect the
branching process. The model assumes that the synthesis
of the branch determining substance takes place in the
cell body. This is likely the case at least during the initial
stages of neurite development, although local protein
synthesis may occur in adult neurites (Alvarez et al.,
2000). The model is also relevant to outgrowth from a
point of synthesis that may be located in a dendrite, but
remote from the growth cones.

2. Models of dendritic growth over time

As with the BESTL model (van Pelt and Uylings,
1999), our new model describes dendritic growth as a
stochastic process in which each terminal segment in the
growing tree has a probability of branching to form two
new daughter segments in any given short time period.
The major difference is that we have a model that is
formulated using biophysical processes, and we investi-
gate the conditions in our model that give a similar
effective modulation of the branching probability over
time as in the BESTL model. Both models are
concerned only with the topological structure of a
dendritic tree and not its shape in 3D space. Segment
length distributions are generated in the BESTL model
by appropriate selection of terminal segment elongation
rates. Our model uses the same strategy for implement-
ing elongation. The important difference between the
models is in how branching events are created. Before
introducing the new model, we give a brief overview of
the BESTL model, against which it will be compared.

2.1. The BESTL model

The BESTL model (van Pelt and Uylings, 1999)
describes the probability, p;, that terminal segment 7 will
branch to form two daughter terminal segments by the
equation:

p; = C27 5"~ E(B/N), (1)
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where B/N is a fixed probability factor for branching in
any one of the N time bins of the growth period; 7 is the
total number of terminals in the tree at the current time
bin and E is the factor by which n affects the branching
probability; y; is the centrifugal order of the terminal
segment (number of branch points currently between the
terminal segment and the cell body) and S is the
factor by which y, affects the branching probability;

=n/>_ 2" %7 is a normalisation factor over the
dependency on centrifugal order.

Implementation of the model in a computer simula-
tion requires dividing the growth period into a number
of short time bins, N (see, van Pelt and Uylings (1999,
2002) for details of how real time might be mapped to
simulated time to account for the base branching rate B
varying over time). For a given time bin, each terminal
segment may branch with a probability given by Eq. (1).
When a branching event occurs, two daughter terminal
segments of initially short length are added to the old
terminal segment. Each new terminal segment is
assigned a fixed elongation rate drawn from a prob-
ability distribution. All terminal segments are elongated
an amount for the time bin according to their rates.

The degree and centrifugal order distributions of the
dendritic trees of many different neuronal types can be
matched with this model by suitable choice of the
parameter values (van Pelt and Uylings, 1999; van Pelt
et al., 1997, 2001, 2003). Values of E are consistently
positive, indicating a decline in branching probability as
the number of terminals in the tree increases. This can be
interpreted as an effect of growth cones competing for
some limited resource (van Pelt et al., 2003). Some tree
types require a positive value for S as well, indicating a
further decline in branching probability with a termi-
nal’s centrifugal order. Purkinje cell data is matched
with a negative S value (van Pelt et al., 2001),
corresponding to an apparent increase in branching
probability with centrifugal order. These differing S
values could be interpreted as larger subtrees being
either more (S <0) or less (S>0) successful than smaller
subtrees in competing for a limited resource that
modulates the branching probability of growth cones.
In spite of these interpretations, it is difficult to relate
the parameters of this model directly with biophysical
processes. In particular, the normalisation constant, C,
implies each terminal has some global knowledge about
every other terminal in the tree.

2.2. The active transport—diffusion (AD) model

In our new model, a substance is transported by a
combination of active transport and diffusion from its
site of production in the cell body to the terminal
segments. Branching is a function of the amount of this
substance available in each terminal of the growing tree.
The spatial production, consumption, decay and trans-

port of this branch-determining substance results in a
branching process which also shows dependency both
upon the number of terminals in the growing tree and
upon their centrifugal order.

In this model, the branch-determining substance has
concentration Cr in terminal segment 7 in the growing
tree. The branching probability of terminal segment 7'
during a short time period dt is given by py = k; Crdt.
The fixed branching rate, k; and the time interval dz are
chosen so that pr<1. A branch event results in a
bifurcation of the terminal segment. The substance is
produced at rate [ in the cell body (location 0: root of
the tree) and decays there at rate y,. The substance also
decays (or is consumed by the branching process) at rate
yr in terminal 7. The substance is transported between
its site of production and the tree terminals with active
transport rate, a and diffusion coefficient, D. Terminal
segments elongate at a fixed rate, so the terminals are
constantly moving further from the cell body. The
changes in concentration over time in the cell body
(location 0), an intermediate segment (location i with
daughter branches / and r), and in a terminal segment
(location T) are given by

dC aAd, DA,

0
=1—79,Cy ——C Cy—C 2
a4 70Co — Vo T L —(Co 1> (2)
dc; . aA; a(A; + A,)
dr - Vi -1 — Vl C +L V (Cz 1= CI)
DA, DA,
3
LV, —(Ci = C; v, (3)
dCT CIAT DAT
— 4
a4 VTCT+V C+LV (Ci—Cr), 4)

where L; is the length of an unbranched segment and A4;
is its cross-sectional area (assumed uniform along its
length). All concentrations are measured in a small
volume V; = A;AL at the distal end of a segment (small
length AL = 1 pm in the results to follow).

The model is implemented numerically by taking the
first order Euler finite difference approximations for the
differential equations. At each time step the concentra-
tions, C;, at the distal ends of every segment (terminal
and intermediate) in the tree and Cy in the cell body, are
calculated. Also at each time step every terminal
segment is examined for a branching event, with the
probability of branching, p,, within time interval d¢
being as given above. When a branching event takes
place, two short daughter terminal segments are
instantaneously added to the end of the existing terminal
segment (van Pelt et al., 2001), which then becomes an
intermediate segment. Following a branching event, all
segment diameters in the tree are updated according to
the scheme 0 below. Note that terminal segment
diameters do not change. The cell body remains the
same size throughout.
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Transport rates are a function of cross-sectional area
in this model. Consequently, how segment diameters
develop over time is important. The physical diameters
of many adult dendrites approximately follow a power
law (Hillman, 1979; van Pelt and Uylings, 1999):

dy =dj +d, (%)

where d, is the diameter of the parent segment to two
(left and right) daughter segments, d; and d,. Particular
tree types display branch powers in the range 1<e<3
(Hillman, 1979; van Pelt and Uylings, 1999). A value of
e = 1.5 provides electrical impedance matching through
a branch point (Rall, 1959). A branch power of e =2
conserves the total cross-sectional area through a
branch point. Segment diameters become increasingly
uniform throughout the tree at high values of e. Adult
trees corresponding to this observed range of e values
have a relatively large root diameter, with diameters
decreasing as the tree is traversed to the terminal
segments. Intermediate segments may, or may not
display significant tapering (Burke et al., 1992; Hillman,
1979). Terminal segments are relatively uniform in
diameter for a given tree (Hillman, 1979). Parent
segments of relatively more highly branched subtrees
have larger diameters than their siblings.

It is likely that as a tree grows, segment diameters
increase gradually over time to finally reach their adult
size. We use an approximation to such a continuous
increase in segment diameters. Segment diameters are
adjusted instantaneously following each new branching
event so that all segments in the tree satisfy the branch
power law given above for the specified value of e. Each
new terminal segment takes a small, constant diameter,
dr. The diameters of all proximal segments are
increased to match the power law at each branch point.

In the results to follow we explore a wide range of
branch powers, including values outside the range
determined from the diameters of real neurites. We do
this because the cross-sectional areas that result provide
the effective transport area, but do not necessarily have
to correspond to the anatomical cross-sectional area. It
is possible that the cross-sectional area devoted to active
transport is not a linear function of segment diameter.
Microtubules provide the support for active transport.
Microtubule number is correlated with neurite diameter,
but microtubule density decreases with diameter (Alvar-
ez et al., 2000), in accord with the above argument. The
area available to free diffusion of molecules may also
not be a simple linear function of segment diameter.

2.3. AD model parameter values

The transport of cytoskeletal proteins along growing
neurites is thought to be predominantly by slow active
transport (Galbraith et al., 1999; Kobayashi and
Mundel, 1998; Miller and Samuels, 1997; Shah and

Cleveland, 2002). In most of the simulations that follow
we therefore take the diffusion rate D = 0. The slow
transport rate of different proteins is reasonably
conserved. For example, the slow transport rate for
oligomeric tubulin in the squid giant axon has been
measured at about 100 um/h (Galbraith et al., 1999),
whereas polymerized neurofilaments are transported at
around 50 um/h (Galbraith et al., 1999). However,
diffusion may also contribute to the transport. Diffusion
rates vary greatly with the medium and the size of the
diffusing molecule. The diffusion rate of tubulin within
the squid giant axon is around 30, 000 um?/h (Galbraith
et al., 1999). Tubulin diffuses at around 150,000 um?/h
in buffer, while neurofilaments diffuse at around
1500 um? /h in axoplasm (Galbraith et al., 1999). The
axoplasmic values for oligomeric tubulin will be used as
the basic transport rates for our branch determining
substance. However, we explore the effects of a wide
range of parameter values, including transport rates, so
our results are not restricted to tubulin as a branch
determining substance.

Tubulin concentrations are in the micromolar range
(Mitchison and Kirschner, 1984; Odde, 1997). The
production I, somatic decay y,, and terminal consump-
tion and decay y, rates are chosen to give an initial
concentration of 1 uM in the soma and neurite. y; may
be equated with the assembly rate of free tubulin into
microtubules in a terminal segment. On the basis of
microtubule density in squid giant axon (Alvarez et al.,
2000) and the number of tubulin subunits in 1 um of a
microtubule (Odde, 1997), consumption of free tubulin
is on the order of 1 uM/h for elongation rates of around
I um/h. For most of the results that follow we take
yr = 100/h.  Conditions  ranging from  high
(I = 1000 uM /h) to low (I = 1 uM/h) production rates
are explored. The parameter values for the four
production levels considered are given in Table 1.

Cell geometry is as follows. The soma is 10pum in
diameter and terminal segments are 1pum in diameter.
Following a branching event, the new daughter terminal
segments are given an initial length of 5 um, in keeping
with experimental data indicating segments have a
minimum length (van Pelt et al., 2001). The elongation
rate of each terminal segment is 0.22 um /h, representing
the average outgrowth resulting from periods of fast
elongation and retraction for rat layer V pyramidal cell

Table 1
Production and decay model parameter values that give an initial
somatic concentration of 1 uM for different production levels

1(pM/h) 70(/h) 77(/h)
1000 990 100
10 9 100
2 1 100
1 0.01 100




B.P. Graham, A. van Ooyen | Journal of Theoretical Biology 230 (2004) 421-432 425

basal dendrites (van Pelt and Uylings, 1999). Neurites
are grown for 200h with the terminal branching rate,
kp = 0.02/uMh (unless stated otherwise). Time interval
dt is chosen to provide stable integration and ranges
from 107> to 107°h. Statistics on the number of
terminals (degree), centrifugal order of terminals and
asymmetry of the tree were collected from 1000
simulated trees (100 trees for Purkinje cell simulations).
Tree asymmetry is a measure of the relative difference in
the number of terminals in the two subtrees at each
bifurcation point. It is calculated as (van Pelt and
Uylings, 1999):
1 ol |Z] — le

A, = (6)
! ”_1j=1 lj+Vj—2

for [; 4+ r;>2, where n is the number of terminals in the
tree and /; and r; are the number of terminals in the left
and right subtrees at the jth bifurcation point.

For comparison with the BESTL model, BESTL
model parameters were adjusted until tree distributions
were obtained with the same mean and standard
deviation for degree, centrifugal order and asymmetry.
Appropriate sets of BESTL parameters could be found
in all cases.

3. Results
3.1. High production rate

Initially, we consider the form of neurite growth when
production is high (I = 1000 uM/h). In this situation
the somatic concentration remains nearly constant at
1 uM throughout the growth period.

Fig. 1(a) shows the equivalent BESTL E and S
parameters that matched the 4D model tree statistics
obtained for different values of the branch power, e, that
determines how segment diameters increase over time.
Only active transport was included (a¢ = 100pum/h,
D = 0). The BESTL branching rate B was 4 in all cases

1
2 08
0
m 0.6
5
< 04
=
>
(=g - E
w 02 - S
calc]
0
0 5 10 15 20
€] Branch power (e)

(equal to the branch period multiplied by the 4D
branching rate: 200 x 0.02). Clearly, E and S covaried
with e and they are well matched by the relationship
E=S=1-2/e.

In these high production conditions with no diffusion,
terminal concentrations are not limited by the avail-
ability of substance at the site of production in the cell
body, but by how the substance is distributed by active
transport. This is a function of segmental cross-sectional
area. From the power law for segment diameters
(Eq. (5)), it follows that, if all terminal segments have
the same diameter, dr, then

dy = (dj +d9)"/* = n)/“dr, (7)

where n, is the number of terminals in the subtree below
segment p. In each time step, the relative amount of
substance moved by active transport into each daughter
segment is proportional to its relative cross-sectional
area. For example, the proportion going into the left
branch is:

A] dlz nlz/e

A1+Ar_d?+d3_n/2/e+n,2

- ®)

In the BESTL model, S = 0 indicates no dependence on
centrifugal order. The same effect occurs here when
e = 2, as the amount leaving a parent segment is split
directly in proportion to the number of terminals in each
subtree so that all terminals will receive the same
amount of branch-determining substance. If e = oo in
the above equation, then the substance is split equally
between the daughter branches, irrespective of the size
of the individual subtrees. This has the same effect as
S =1, as then terminal branching probability decreases
by a factor of 2 with each increment in centrifugal order.
We can equate the two models by setting 2/e = 1 — S.

Similarly, the amount of substance transported from
the soma increases in proportion with the cross-sectional
area of the initial segment, A;:

Ay o d? = n*edr, ©))

Equivalent BESTL

(b) Diffusion coefficient (D)

Fig. 1. Equivalent BESTL parameters E and S to match 4D tree statistics in high production conditions (/ = 1000 uM /h). (a) Active transport
(¢ = 100 pm/h) and no diffusion (D = 0), with branch power e varied (calc: E = S = 1 — 2/e); (b) Active transport and fixed segment diameter, with

diffusion coefficient varied from 0 to 30,000 um? /h.



426 B.P. Graham, A. van Ooyen | Journal of Theoretical Biology 230 (2004) 421-432

where #n is the total number of terminals in the growing
tree. Thus the AD and BESTL models can be equated by
2/e=1—E.

Increasing diffusion rate, with fixed segment dia-
meters, has a similar effect to decreasing the branch
power (Fig. 1(b)). As more substance is transported by
diffusion, concentrations throughout the tree become
more uniform and so effects of the number of terminals
and centrifugal order are reduced. For apparent
physiological tubulin transport rates (¢ = 100pum/h,
D = 30,000 um?/h) terminal number and centrifugal
order effects are small (£ = 0.225, S = 0.08). With non-
uniform segment diameters (small ¢), equivalent £ and .S
values are reduced further (results not shown), as in the
case of no diffusion. For example, with ¢ = 100 pm/h,
D = 30,000 um?/h and e = 4, the equivalent values are
E =0.08, S =0.02.

3.2. Lower production rates

If the production rate is sufficiently low, the somatic
concentration is no longer constant but drops as new
terminals are added to the growing tree and demand for
the branch determining substance increases. This
introduces a new factor that influences the equivalent
E value, but not the S value, as shown in Fig. 2. For
active transport only, the equivalent S value decreases
with branch power e (increasing segment diameters),
reaching zero when e =2, and is independent of the

Equivalent E
© o o
N [e)] o]

o
N

o

f 4 2

Branch power (e)

g

0.8

0.6

0.4

Equivalent E

0.2

|

In
1 I

0 3000 30000
(0 Diffusion coefficient (D)

production rate (Fig. 2(b)). The situation for the
equivalent E value is more complex (Fig. 2(a)). If
segment diameter is uniform, then £ = 1 regardless of
production rate. If segment diameters increase (e = 2 or
4) over time, then E decreases with increasing produc-
tion rate, becoming zero when I = 1000pM/h and
e = 2. Here, E remains high at low production levels due
to reduction in the soma concentration as more
substance is transported from the soma as diameters
increase. Thus the increased transport is nullified by a
lack of resource. The same situation arises for increasing
diffusion rates, with uniform segment diameters
(Fig. 2(c), (d)). Now, increased transport due to faster
diffusion is nullified by a lack of resource in low
production conditions. As this affects the amount of
substance available to all terminals, the centrifugal order
effect (S value) is not altered.

Thus changes in production rate alter the effects due
to the number of terminals but not their centrifugal
order, introducing some independence in the equivalent
E and S values. Such independence is apparent in the
statistics from real dendritic trees, as will be explored
below.

3.3. Effect of decay or consumption at a terminal

Varying the terminal consumption/decay rate y; has
different effects depending on whether active transport
or diffusion is the dominant transport mechanism.

1
=1
i 2
08 3 10
(%) [ 1000
£ 0.6
<
g
S 04
(o
w
0.2
0
Inf 4 2
(b) Branch power (e)
1
0.8
n
E 0.6
[
=
2 04
w
0.2
0 0
0 3000 30000
(d) Diffusion coefficient (D)

Fig. 2. Equivalent BESTL parameters to match 4D tree statistics in varying production conditions. (a), (b) Active transport (¢ = 100 um/h) and no
diffusion (D = 0), with branch power e varied (Inf is uniform diameter); (c), (d) Active transport and fixed segment diameter, with diffusion

coefficient varied. Missing bars correspond to zero values.



B.P. Graham, A. van Ooyen | Journal of Theoretical Biology 230 (2004) 421-432 427

B

w A
o o~ v oo

Equivalent B

w

N
o

100 200 300 400 500
@ Decay rate (y)

E and S

0.5

Equivalent BESTL

(b) Decay rate (y;)

Fig. 3. Equivalent BESTL parameter values when terminal consumption/decay rate y; is varied. @ = 100 um/h, D = 30000 um?/h, I = 1000 uM /h,

7o = 990/h and uniform diameter throughout.

Without diffusion, y, acts simply to set the base
branching rate (equivalent B value). Increasing yr
decreases the equivalent B value, and vice versa (e.g.
y¢ = 50/h gives B =8; y; = 200/h gives B = 2). When
diffusion is dominant, the effect on the base branching
rate is reduced and variations in the equivalent £ and S
values are introduced, due to the equilibrating effect of
diffusion on concentration levels throughout the tree.
For example, raising y, decreases the equivalent B value
whilst increasing the equivalent £ and S values as the
increased consumption affects the entire tree when new
terminals are added. Example equivalent BESTL para-
meter values are given in Fig. 3 for variations in y.

3.4. Matching statistics of real dendritic trees

The BESTL model is able to well fit topological tree
statistics from a range of different neuronal tree types
(van Pelt et al., 1997, 2001, 2003; van Pelt and Uylings,
1999). Though the complete real neuronal data is not
published, we can explore the ability of the 4D model
to produce different tree types by comparing it with
BESTL model output using the optimal BESTL
parameter values found for particular neuronal trees
(van Pelt et al., 1997, 2001, 2003; van Pelt and Uylings,
1999). The AD model was fit by trial-and-error to
BESTL degree, centrifugal order and asymmetry
distributions by varying production rate / and branch
power e with only active transport (¢ = 100pum/h,
D =0). The match between the BESTL and AD
distributions for four different dendritic tree types is
shown in Fig. 4. There is a strong similarity between
most of the distributions, as revealed by chi-square test
p-values. In particular, the match between the degree
distributions is of the same order as the match between
the BESTL model and the distributions from real trees,
as reported in van Pelt et al. (1997). The optimal BESTL
(taken from the literature cited above) and correspond-
ing AD parameter values are given in Table 2.

Clearly, the variety of dendritic tree topologies found
in real neurons is able to be reproduced by the 4D
model through variations in production and transport
of the branch-determining substance. Note that all the
tree types are best matched by the 4D model in low
production conditions during which a reduction in the
soma concentration contributes to a reduction in
branching probability with the increase in the number
of terminals in the tree. Both the base branching rate kp,
and the branch power e vary with tree type. The increase
in branching probability with centrifugal order apparent
for Purkinje cells (negative S value) is achieved with a
branch power e less than 2, so that proportionally more
substance is transported into larger subtrees.

4. Discussion

The BESTL model of neurite outgrowth indicates
that branching is affected by the number of terminals in
the growing tree and their centrifugal orders. It is not
clear how such dependencies might arise in the real
neuron. Here we have investigated a model in which
branching depends on the amount of a substance in each
dendritic terminal. The substance is produced in the cell
body and must be transported to the terminals, where it
promotes branching. The interaction of production and
transport introduces similar branching dependencies to
those exhibited by the BESTL model.

4.1. Effects due to active transport

When active transport is the dominant mechanism,
branching effects due to the number of terminals in the
growing tree and their centrifugal order arise due to how
the transport mechanism distributes the branch-deter-
mining substance throughout the tree. In our model it is
assumed that the rate of active transport is proportional
to the cross-sectional area of a tree segment. This is on
the basis that an increase in segment diameter includes
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Fig. 4. (a—d) Match of AD model to BESTL model optimized to the tree statistics from different neuronal types (see Table 2 for details of tree types).
Solid lines: AD; dashed lines: BESTL. Data from 1000 simulated trees; except 100 trees only for Purkinje cells. Numbers on each graph are chi-square
test p-values, indicating the similarity of the distributions.

Table 2

BESTL and AD parameter values required to match real tree statistics

Tree B E s ks (/uM h) ¢ I(uM/h) Jo(/1) 7.(/h)
PC2/3 2.52 0.73 0.5 0.0126 4 2 1 100
PC5 3.85 0.74 0.87 0.01925 8 10 9 100
non-PC 1.26 0.106 0 0.0063 2 20 19 100
Purkinje 95 0.69 —0.14 0.13 1.7 20 19 100

PC 2/3 are rat cortical layer 2/3 pyramidal cell basal dendrites (van Pelt et al., 2001); PC 5 are rat cortical layer V pyramidal cell basal dendrites (van
Pelt and Uylings, 1999); non-PC are rat cortical layer IV multipolar non-pyramidal cell dendrites (van Pelt et al., 2003); Purkinje are guinea pig
Purkinje cell dendrites (van Pelt et al., 2001).
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an increase in the number of microtubules and conse-
quently an increase in the molecular machinery provid-
ing active transport.

A strong centrifugal order effect arises if daughter
branches have very similar diameters to the parent
branch, irrespective of the size of the subtrees (large e).
The BESTL model that best fits the growth of the basal
dendrites of large layer V neocortical pyramidal cells has
a value of S = 0.87 (van Pelt and Uylings, 1999). This
corresponds to e ~ 16. The physical diameters of real
dendrites are generally approximated by 1<e<2 (van
Pelt and Uylings, 1999). That is, real dendrites show
much greater variation in dendritic diameters than this
dependence on centrifugal order implies. It is possible
that the amount of substance transported into a segment
increases only marginally with an increase in physical
cross-sectional area, rather than in direct proportion.
This is in accord with the decrease in microtubule
density seen with increasing neurite diameter (Alvarez
et al., 2000). In contrast, other tree types do not display
such a strong dependence on centrifugal order, inline
with the model of increasing transport with increasing
segment diameters (see Table 2). So the 4D model
depends on a power law setting of transport area in each
new branch, but this may be different from that which
describes the anatomical diameters of different
branches.

In the AD model, with high production and no
diffusion, the branch power e effectively sets both the
equivalent BESTL parameters according to the relation-
ship E =S =1—2/e. Previously we defined a steady-
state model in which the production of the substance in
the cell body is regulated by the number of terminals in
the tree and the substance is distributed throughout the
tree according to the relative sizes of subtrees (Graham
et al., 1998; van Pelt et al., 2003). It differs from the AD
model in that no transport mechanism is specified and,
importantly, effects due to the number of terminals (£)
and their centrifugal order (S) are independent. This
model behaves identically to the BESTL model for the
same values of the £ and S parameters (van Pelt et al.,
2003). The AD model provides a possible implementa-
tion of this based on active transport, with the limitation
that £ = S. Some independence between E and S arises
in the AD model when production rates are low or
diffusion accounts for a proportion of the transport.

4.2. Effects due to diffusion

The effect of diffusion is to equilibrate, to some
extent, the substance concentration throughout the
growing tree. The physiological rate of diffusion for
oligomeric tubulin in axoplasm (D = 30000 um?/h)
results in low equivalent values of E and S in high
production conditions (Fig. 1(b)). That is, the effects of
the number of terminals and centrifugal order on

branching are small. Terminal number and centrifugal
order effects become much stronger at diffusion rates an
order of magnitude lower than this, as might apply for
transport of polymerized proteins (Galbraith et al.,
1999). For D<300 um?/h the equivalent E and S values
are close to 1, irrespective of the production rate. At
high diffusion rates, the effect of centrifugal order
remains small, independent of variations in production
rate (Fig. 2(d)). The effect of the number of terminals,
however, is now strongly dependent on the production
rate (Fig. 2(c)). When production is low, diffusion is
very successful at equilibrating concentration through-
out the cell, including the soma. Consequently, the
addition of new terminals introduces extra consumption
(y7) which lowers concentration levels in proportion
to the number of terminals in the tree. So now an
equivalent E effect arises from consumption of the
branch-determining substance at the terminals, rather
than through distribution of a finite amount of
substance to all terminals, as in the active transport-
dominant case.

In conditions in which equilibration is achieved (low
production and small soma volume with high diffusion)
the soma and terminal concentrations are given by
(derivation in Appendix A):

1

CorxCr~—,
Yot

(10)

where n is the total number of terminals in the tree. This
dependency of terminal concentration on the total
number of terminals in the tree is similar to the E effect
in the BESTL model. Appropriate values of y, and vy,
can be chosen to approximate the effect of a given value
of E, as illustrated in Fig. 5.

For the cell used here this dependency does not
strictly hold as the large size of the soma provides a
sufficient reservoir of substance that diffusion cannot
equilibrate the entire cell, even at low production rates.
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Fig. 5. Dependency of the probability of branching on the number of
terminals in a growing tree for the BESTL and diffusion dominant AD
models. Values for y, and y; to approximate the BESTL terminal
number dependency E are given to the right of each trace. The
production rate is / = 1.
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Thus E and S effects due to transport limitations are still
present (see Fig. 3).

4.3. Branching rate over time

During neurite development it is highly likely that the
base branching rate (B parameter in the BESTL model)
is not constant over time. Data from rat multipolar non-
pyramidal cells indicate that the base branching rate
decays exponentially with time, irrespective of terminal
number and centrifugal order effects (van Pelt and
Uylings, 2002). The AD model displays an effective
constant base branching rate with time. Thus the
transport-limited effects demonstrated here do not
include a reduction in branching rate over time.
Production rate I has been assumed constant in the
AD model, but a reduction in branching rate would arise
if production declined with time.

5. Conclusions

A model of dendritic branching in which a terminal’s
branching rate is determined by the concentration of a
substance, such as tubulin, is introduced. This model
demonstrates how branching dependencies on the
number of terminals and their centrifugal order, as
described by the BESTL model (van Pelt and Uylings,
1999), may arise due to the active transport and
diffusion of the branch-determining substance. When
active transport is dominant, the dependencies arise
through increases in the available transport area as tree
segment diameters increase as a function of the size of
their supported subtrees. This model is sufficient to
match the tree statistics from a variety of real neuronal
dendrites. If diffusion is dominant, the effects of
substance consumption in each terminal are transmitted
throughout the tree by the equilibrating effect of
diffusion. This introduces dependencies on the number
of terminals and their centrifugal order that are
determined by the substance production and decay
rates.

Experiments that measure the transport and concen-
tration of branch-determining substances such as
tubulin and MAPs along growing neurites would help
verify our model. From the comparison with real trees
(Fig. 4 and Table 2), our model predicts that the
concentration of the substance, for example tubulin, will
decrease throughout the tree as the tree grows and
branches. This will be most marked in those tree types
that exhibit a strong modulation in branching as the tree
becomes more branched (high equivalent E value), as in
pyramidal cell basal dendrites. These trees should also
have a relatively low substance production rate. Those
tree types that show modulation in branching with
centrifugal order will exhibit variability in the substance

concentration at terminal growth cones. Where branch-
ing decreases with centrifugal order, again as in
pyramidal cell basal dendrites, the growth cones of
larger subtrees will have a lower concentration than
those of smaller (less branched) subtrees. For Purkinje
cells the opposite should be the case. There larger
subtrees will show a higher growth cone concentration.
The relative concentrations in two daughter branches
immediately following a branch point should also be
indicative of centrifugal order effects. Here, similar
concentrations in the daughter branches should corre-
late with a strong centrifugal order effect. A higher
concentration in the daughter branch of the larger
subtree should correlate with limited modulation in
branching with centrifugal order.

Experiments that disrupt active transport mechanisms
would clarify the relative contributions of active
transport and diffusion to the growth process. This
would require specific interruption to the active trans-
port of say, tubulin, without altering the active transport
of other organelles. If this was possible then, if active
transport is the dominant mechanism, tree growth
would be severely stunted. If active transport and
diffusion both contribute, then apart from some loss
in branching due to the removal of one transport
mechanism, a reduction in any centrifugal order effects
should also be evident when only fast diffusion is
available for transport. Concentration gradients
throughout the tree should also become more uniform.

This AD model is very simple both in its description
of the biological processes involved in neurite outgrowth
and branching, and in its numerical implementation. In
ongoing work we are developing both more detailed and
necessarily complex models (Hely, 2001), and numeri-
cally accurate techniques for simulating the growth of
neurites in space and time (Graham and van Ooyen,
2001; McLean et al., 2003). A more complete description
of neuronal growth will include the generation of
dendrites in 3D space, with appropriate formation of
branching angles (Tamori, 1993), and the pathfinding of
terminal growth cones through the external environment
(Li et al., 1995; van Veen and van Pelt, 1992).
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Appendix A. Simplification of diffusion-only model

An appreciation of the behaviour of a diffusion
dominant model can be gained by considering the
terminal concentrations when n branches are all growing
from the soma. The changes in concentration over time
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in the cell body and at the terminals are given by

dC() - DAT
——2 =7 § j — Al
T 70 Co + 2 LTVO(CT Co), (A.1)
dCr DAy
— A2
& y7Cr +LT VT(Co Cr), (A.2)

where L7 is the intracellular longitudinal distance
between terminal 7" and the cell body, Ar is the
available cross-sectional area (assumed uniform along
the length of the branch) and Vr is the volume into
which diffusion takes place.

In the steady-state the cell body and terminal
concentrations can be calculated explicitly. We assume
that all terminals are equidistant from the root, with
distance L, and have equal decay rates, y;, and all
branches have the same cross-sectional area, 4. All
terminal concentrations will then be the same and thus:

dC() nDA
T I —,Co +L—VO(CT — (o) =0, (A.3)
nDA nDA
1 Cr= — | C A4
= +LV0 T (Vo-f-LVO) 05 (A4)
LV01+I’ZDACT
Co=——— A.5
= = TV, +nDA (A-3)

Substituting this expression for Cy into the equation for
Cr gives

dcy DA (LVI 4+ nDACy
dr T T+LVT( 70LVo +nDA T) ’
(A.6)
_ DA o nD*A4*
Vs T T LV (3 LVo +nDA)) T
DIAV,
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(3oLVo + NDA)V 1 (A7
DIAV
= Cr= 0 (A.8)

Yoy LVoVr 4+ (poVo+nyrVr)DA

If diffusion is fast so that DA is large, and Vo & V' then
the above reduces to

1

Cor Cr~———.
Yo +HyT

(A.9)
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