My home page | Home

Spike timing-dependent structural plasticity of multicontact synaptic connections

Deger, M. (2017). In: Van Ooyen, A., and Butz-Ostendorf, M., eds. The Rewiring Brain: A Computational Approach to Structural Plasticity in the Adult Brain. San Diego: Academic Press, pp. 261-273.


Abstract

Networks of neurons in the neocortex change. In the adult neocortex, structural plasticity causes continuous formation and removal of dendritic spines, the structural substrate of most excitatory synapses. Yet, despite this ongoing turnover, statistics of spine numbers remain constant and synaptically stored memories can persist for a lifetime. Several modeling approaches have been developed toward understanding structural plasticity. This chapter summarizes recent work on spike timing-dependent plasticity models of dendritic spine plasticity and turnover. Such models provide a link between conceptual works rooted in artificial neural networks, and biophysical modeling approaches trying to identify and describe the biological substrate underlying plasticity. Recent modeling of synaptic connections made of multiple dendritic spines has demonstrated how cooperative synapse formation can be explained by the dependence of spine plasticity on pre- and postsynaptic spike timing, and how cooperation of spines may lead to long-term stable synaptic connections with highly reliable synaptic transmission.


My home page | Home