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Appendix A. Growth in Diffusive Chemical Gradients

In this Appendix, we describe how a set of interacting diffusible chemicals µ may control

axonal development. These chemicals diffuse in the extracellular space with diffusion con-

stants Dµ and decay with rate constants δµ. The diffusion equations with sources and losses

thus take the form

∂ρµ/∂t = Dµ∇2ρµ − δµρµ + Sµ(x, t), (A1)

where ρµ is the concentration of chemical µ, ∇ρµ its concentration gradient, and Sµ(x, t)

represents the source flux of chemical µ. If the chemical µ is released from fixed targets that

are treated as point sources at positions xi, then

Sµ(x, t) =
∑
i

σµ({ρ(xi, t)})δ(x− xi), (A2)

where x is a point in the extracellular space and δ(x) is the Dirac delta function. If the

migrating growth cones at rα(t) are themselves treated as point sources of the chemical µ,

Sµ(x, t) =
∑
α

σµ({ρ(rα(t), t)})δ(x− rα(t)). (A3)



In equations (A2) and (A3) we have allowed for the possibility that the rate of release

σµ({ρ}) could depend on the concentration {ρ} of other chemoattractants and chemorepel-

lants at the release site.

The growth cones will respond to these diffusible chemicals by growing up the gradients

of chemoattractants and down the gradients of chemorepellants. Thus, the combined effect

of several diffusible cemicals on the growth of axon α will be given by

drα/dt =
∑
µ

λµ,attract∇ρµ(rα(t), t)−
∑
µ

λµ,repel∇ρµ(rα(t), t), (A4)

where λµ,attract and λµ,repel are the rates of growth to the gradients of chemoattractants and

chemorepellants, respectively.

As axon growth usually occurs on a much longer time-scale than the time needed for

the diffusive fields to equilibrate, we can replace equation (A1) by the quasi-steady-state

approximation

[∇2 − κ2
µ]ρµ = −Sµ(x, t)/Dµ, (A5)

where κµ =
√
δµ/Dµ is the inverse diffusive length for chemical µ. Note that diffusive gradi-

ents can therefore control development on a range of scales, depending on the biochemistry

of the molecules involved. Quasi-steady-state equations such as these we actually integrate

in our simulations.

Because equation (A5) is linear, it can be solved using Green’s functions such as

ρµ(x, t) =
∫
Gµ(x− x′)Sµ(x′, t)/Dµdx

′. (A6)

The nature of the Green’s functions to be used depends on the dimensionality of the extracel-

lular space and on the boundary conditions imposed experimentally. For the two-dimensional

simulations, the Green’s function can be expressed in terms of the modified Bessel function

K0(x) as Gµ(x− x′) = K0(κµ|x− x′|)/2π (e.g. Bronstein & Semendyayev 1997).



Thus, using equations (A2) and (A3), we can write down expressions for the diffusive

fields:

ρµ(x, t) =


(1/2π)

∑
i[σµ({ρ(xi, t)})/Dµ]K0(κµ|x− xi|) (target)

(A7)
(1/2π)

∑
α[σµ({ρ(rα(t), t)})/Dµ]K0(κµ|x− rα(t)|) (gr. cone)

or, provided we are only interested in the concentration far from the source, we can replace

the modified Bessel function by its asymptotic form K0(x) ≈
√
π/2x exp−x, and

ρµ(x, t) =


√

1/8π
∑
i[σµ({ρ(xi, t)})/Dµ] exp−κµ|x− xi|/

√
κµ|x− xi| (target)

(A8)√
1/8π

∑
α[σµ({ρ(rα(t), t)})/Dµ] exp−κµ|x− rα(t)|/

√
κµ|x− rα(t)| (gr. cone)

Similarly, the instantaneous concentration gradient of chemical µ at growth cone α, a quan-

tity required for calculating the response of the growth cone to chemical µ (see equation

(A4)), is given by

∇ρµ(rα(t), t) =



√
1/8πκµ

∑
i[σµ({ρ(xi, t)})/Dµ] exp−κµ|rα(t)− xi|

|rα(t)− xi|−3/2[κµ|rα(t)− xi|+ 1/2](r̂α(t)− x̂i) (target)

(A9)√
1/8πκµ

∑
β 6=α[σµ({ρ(rβ(t), t)})/Dµ] exp−κµ|rα(t)− rβ(t)|

|rα(t)− rβ(t)|−3/2[κµ|rα(t)− rβ(t)|+ 1/2](r̂α(t)− r̂β(t)) (gr. cone)
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Appendix B. Scaling The Equations of Motion

Converting variables into non-dimensional ones usually reduces the number of parameters.

In equations (1), (2), and (3) (in main text) there appear to be nine relevant parameters

(excluding those of the Michaelis-Menten functions), but by scaling the length and time in

terms of the growth cone parameters (i.e. measure lengths in terms of L = κ−1
cone, and time

in terms of T = [
√

8πDcone/λconeκ
2
coneσcone] ) and defining dimensionless concentrations

ρcone = [σcone/
√

8πDcone]ρcone,dim

ρtarget = [σtarget/
√

8πDtarget]ρtarget,dim (B1)

ρrep = [σmax/
√

8πDrep]ρrep,dim,

we can reduce the number of parameters to only four dimensionless parameters:

χ1 = κtarget/κcone

χ2 = κrep/κcone (B2)

χ3 = (λtarget/λcone)[σtarget/Dtarget]/[σcone/Dcone]
√
κcone/κtarget

χ4 = (λrep/λcone)[σmax/Drep]/[σcone/Dcone]
√
κcone/κrep.

Two parameters control the geometry by setting the relative length scales: χ1 is the ratio

of the diffusive length scales of the axon-derived chemoattractant and the target-derived

chemoattractant, while χ2 is the ratio of the diffusive length scales of the axon-derived

chemoattractant and the axon-derived chemorepellant. The other two parameters control

the growth rates in response to the diffusive fields: χ3 controls the growth rate to the target-

derived chemoattractant relative to the growth rate to the axon-derived chemoattractant,

while χ4 controls the growth rate to the axon-derived chemorepellant relative to the growth

rate to the axon-derived chemoattractant.


