Neural Networks, Vol. 5, pp. 465-471, 1992
Printed in the USA. All rights reserved.

ORIGINAL CONTRIBUTION

0893-6080/92 $5.00 + .00
Copyright © 1992 Pergamon Press Ltd.

Improving the Convergence of the Back-Propagation Algorithm

A. VAN OOYEN

Netherlands Institute for Brain Research

AND

B. NIENHUIS

University of Amsterdam

(Received 26 June 1991, revised and accepted 17 October 1991)

Abstract— We propose a modification to the back-propagation method. The modification consists of a simple change
in the total error-of-performance function that is to be minimized by the algorithm. The modified algorithm is
slightly simpler than the original. As a result, the convergence of the network is accelerated in two ways. During the
learning process according to the original back-propagation method, the network goes through stages in which the
improvement of the response is extremely slow. These periods of stagnation are much shorter or even absent in our
modified method. Furthermore, the final approach to the desired response function, when the network is already
nearly correct, is accelerated by an amount that can be predicted analytically. We compare the original and the
modified method in simulations of a variety of functions.

Keywords—Back-propagation, Gradient-descent, Three-layer networks, Error function, Convergence.

1. THE BACK-PROPAGATION METHOD

The back-propagation method of Rumelhart, Hinton,
and Williams (1986a) is a learning procedure for mul-
tilayered, feedforward neural networks. By means of
this procedure, the network can learn to map a set of
inputs to a set of outputs. The mapping is specified by
giving the desired activation state of the output units
(the target state vector) for each presented state of the
input units (the input state vector). Learning is carried
out by iteratively adjusting the coupling strengths in
the network so as to minimize the differences between
the actual output state vector of the network and the
target state vector. The network is initialized with small
random coupling strengths. During the learning pro-
cess, an input vector is presented to the network and
propagated forward to determine the output signal. The
output vector is then compared with the target vector
resulting in an error signal, which is back-propagated
through the network in order to adjust the coupling
strengths. This learning process is repeated until the

Requests for reprints should be sent to A. van Qoyen, Netherlands
Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam,
The Netherlands.

465

network responds for each input vector with an output
vector that is sufficiently close to the desired one. The
back-propagation algorithm will now be described in
more detail reproducing the formulas from Rumelhart
et al. (1986a, 1986b).

The general formula for the activation A4 of each unit
in the network (except for the input units whose acti-
vation is clamped by the input vector) is given by:

1
1 +exp{—(ZX(wy)) + h)}’

where wj; is the strength of the coupling between unit
J (for which the activation is calculated) and unit / in
the next lower layer, N is the total number of units in
that layer, y; is the activation of unit i, and #4; is the
threshold or bias for unit j. This bias can be conceived
of as a coupling to a unit with full activation, and is in
practice treated just like w. Here we consider a three-
layered network consisting of a layer of input units
(represented by x), a layer of hidden units (y), and a
layer of output units (z). The activation of a hidden
unit,

AJ(W:h,J’): (1)

Vi = A4, by, x), (2)

where v represents the strength of the couplings between

466

layer x and y, and #; is the bias of hidden unit j. The
activation of an output unit,

z; = A{w, 05,), (3)

where w represents the strength of the couplings be-
tween layer y and z, and o; is the bias of output unit j.
The total error of the performance of the network, E,
is defined as:

N;
; Zje lj,c)z, (4)

nMZ

L
2y
where ¢ runs over all cases (input vectors with their
corresponding target vectors), N, is the total number
of cases, z; is the actual value (activation) of output
unit j, given the input vector, N, is the total number of
output units, and ¢ is the target value of unit j. Hereafter
we will suppress the case index ¢, where clarity does
not require it. To minimize E, each coupling strength
is updated by an amount proportional to the partial
derivative of E with respect to that coupling (accu-
mulated over all cases). The computation of the partial
derivatives will be given in some detail because the in-
termediate results are used also elsewhere in this paper.
The partial derivative of E with respect to w;,

OE _ 3E 9z

B 52, o ®)
where

dE

6_2, =z;— 4, (6)
and

dz;

871‘_:2,‘(1 = Z})¥i- (7)

The partial derivative of E with respect to vy,

9F _ % 0E 0y ay

i 1 0z, 9y v kY

where
N

Eyf =zl — z)wy, 9)
and

i

G_U_A yi(l = yi)xe. (10)
The factor (z; — ¢;)z,(1 — z) occurs in both dE/dw;;
and 0E/dvy; (z; — 1)) z{(1 — z;) is, as it were, propagated

backward from the layer of output units to the layer of
hidden units. As it contains only z; and ¢, it is defined
as the error signal of output unit j.

The coupling strengths w;; are updated according to
the following rule (Rumelhart et al., 1986a; Vogl,
Mangis, Rigler, Zink, & Alkon, 1988):

Ne [OF
Awi(s+1)=—n2 I + alw;(s), (11)
c=1 wji

A. van Ooyen and B. Nienhuis

where s represents the sweep number (i.e., the number
of times the network has been through the whole set
of cases, at which time the coupling strengths are up-
dated), ¢ runs over cases, N, is the total number of
cases, 7 is the (constant) learning rate, « is the relative
contribution of the previous change of the coupling
strength (« is the so called momentum factor). By
analogy, the coupling strengths vy, are updated as:

Avg(s+ 1) = —n Z (6E) + alAvg(s). (12)
= 6v,k
The back-propagation algorithm amounts to perform-
ing gradient descent on a hyper surface in coupling
strength space, where at any point in that space the
error of performance (4) is the height of the surface.
The method is not guaranteed to find a global mini-
mum of E since gradient descent may get stuck in
(poor) local minima, where it will stay indefinitely.

In practice, back-propagation has proved to be a
suitable algorithm in establishing a set of coupling
strengths that enables the network to perform certain
input-output mappings (e.g., Rumelhart et al., 1986b;
Sejnowski & Rosenberg, 1987; Zipser & Andersen,
1988). The convergence, however, tends to be extremely
slow. Several acceleration techniques have been pro-
posed [e.g., dynamically modifying the learning pa-
rameters (Fahlman, 1987; Jacobs, 1988; Tollenaere,
1990; Vogl et al., 1988), and rescaling the partial de-
rivatives in the consecutive layers (Rigler, Irvine, & Vogl,
1991)].

2. THE MODIFIED BACK-PROPAGATION
METHOD

The back-propagation algorithm as described above
encounters the following difficulty. When the actual
value z; approaches either extreme value, the factor
zj(1 — z;) in eqn (7) makes the error signal very small.
This implies that an output unit can be maximally
wrong without producing a strong error signal with
which the coupling strengths could be significantly ad-
justed. This retards the search for a minimum in the
error. For instance, this occurs when some of the output
units are pushed towards the wrong extreme value by
competition in the network, thereby not increasing their
error signal but instead decreasing it.

We note that this delay of the convergence is caused
by the derivative of the activation function. Unfortu-
nately, any saturating response function is bound to
have this property: near the saturation points the de-
rivative vanishes. We will show, however, that a slightly
modified error function of the back-propagation algo-
rithm resolves this shortcoming and indeed greatly ac-
celerates the convergence to a solution. This applies
not only to the initial approach of the desired values,
but also to the final convergence process when the re-
sponse is already near the target vector.

Improving the Back-Propagation Algorithm

The total error function that is to be minimized by
gradient descent, is chosen more or less ad hoc. Other
functions that may be more appropriate with respect
to minimization, could be applied as well. Instead of
minimizing the squares of the differences between the
actual and target values summed over the output units
and all cases, we propose the following error function
to be minimized

N,
Z[llnz+(1 Hin(1 - z)], (13)

an

where ¢ runs over cases, N, is the total number of cases,
N, is the total number of output units, z; is the actual
value (between 0 and 1) of output unit j, and ¢ its
target value. In the modified algorithm, the partial de-
rivative of E with respect to z;,

OE _1-4 4_ 5~ A (14)
az, l—z T z(l—2z)

As dz;/dw;; is not altered in the modified algorithm,
the partial derivative of E with respect to w;; is now

OE _

aTﬂ—(Z;—I;)y, (15)
instead of (z; — #;)z;(1 — z;)y; as in the original algo-
rithm. In the case that the target values are O or [,
formula (13) is equivalent to the one proposed inde-
pendently by Hinton (1987) and which we know
through a citation by Golden (1988).

Thus, the error signal, propagating back from each
output unit, is now directly proportional to the differ-
ence between target value and actual value. Formula
(15) lacks the factor z,(1 — z;), so “true” error is mea-
sured. Only this minimal modification needs actually
be implemented in the original algorithm to change it
into our modified method.

3. COMPARISON OF THE TWO METHODS

The effect of the substitution of the error function can
in part be predicted directly from the algorithm. We
introduce the following distance between the current
output signal and the target values
1/2
= =(3 % @es0) - 06)
e=t j=1

The variation in this distance with time can be simply
computed, as yet without specification of the error
function

N, N, N, _
az-d -3 3 5 A=t

=1 Ozj

9z;
X | Aw; + 9z
(awji Wll E{) Dix Avlk) (17)

467

With eqs (11 and 12) this can be rewritten

Ne My N glz — o]l OF
Mr-tl=—(atm >y 3zt

e=1i=1 j=1 aZ] 32,‘

dz; e (0z; Ay ’

(o) + 2 (Bame) |- oo
Note that both terms of the right hand side contain
from the derivatives of z; two powers of z(1 — z;). These
factors suppress the improvement of the network
whenever any of the z; in any of the cases approaches
either 0 or 1. When, however, we choose the error func-
tion (13), the derivative dE/dz; improves the situation
by taking out one factor z;(1 — z;). Equation (18) al-
ready suggests that the algorithm with the original error
function (4) is susceptible to very slow change whenever
the values of z; are all near 0 or 1. This is problematic
when some of the z; values are not near their target
value. In the modified algorithm this problem is largely
overcome, as already seen here by simply counting
powers, and as shown below in simulations.

A more quantitative analysis is possible when we
study the final convergence. In the tail of a successful
learning process we may assume that all (z; — f;) are
small. As |z — ¢|| approaches zero also its change van-
ishes, in fact as a power of |z — £

Allz =t ~ llz =17, (19)

where for binary problems ¢ = 3 in the original and g
= 2 in the modified algorithm. In both cases the con-
stant of proportionality will deperd on many details of
the network. Since this change can be read as a deriv-
ative with respect to time, or sweep number s, we find
that

iz =l ~s7*, (20)

where p = } for the original and p = 1 for the modified
algorithm. Thus, we have demonstrated that our mod-
ification improves the final convergence. For the initial
approach we have shown that the modified network is
less apt to get stuck in states in which some of the
output cells are approaching the wrong value.

3.1. Simulation Results

To compare both methods as to how many presenta-
tions of the set of input vectors are required to achieve
a solution, a wide range of binary problems were ex-
amined. At present, it is not clear how one could, in
advance, determine the complexity of a problem for
the back-propagation algorithm. We therefore choose
problems of which we think are roughly of different
complexity. A network with only one layer of hidden
units was used. Each unit of the hidden and output
layer is connected with every unit in the next lower
layer; there are no direct couplings between the output
layer and the input units. As all gradient descent pro-

468

cedures, the back-propagation procedure is sensitive to
different starting points (here: the initial set of coupling
strengths in the network). Therefore, we experimented
with runs starting from different random initializations
of the network. The same initializations were used for
both the modified method and the original method.
The initial coupling strengths were drawn at random
from an uniform distribution between —0.3 and 0.3
(unless otherwise stated). No fair comparison is pos-
sible if the learning rate (n) and the momentum factor
() are kept the same for both methods, since the actual
learning rate in the modified method is always higher
compared with that in the original method. This as a
result of dropping the factor z;(1 — z;), which has a
maximum value of 0.25. In order to compare both
methods fairly, we tried to establish the optimum values
of o and 7 for each method and problem separately
(Tollenaere, 1990). Using runs starting from different
initializations of the network, the learning parameters
were optimized with respect to the average number of
sweeps that is required to reach the stage of the network
in which the maximal error of the output units, mea-
sured as |z —], is less than 0.5 (and remains less
than 0.5). No attempts were made to find the optimal
values of the learning parameters for each run (ini-
tialization) separately. At the time max([z; —], [<
J < N.;) < 0.5, all the output units are on the ‘right’
side. The convergence to this stage of the network is
defined as the initial approach to the solution. The
convergence to the target values from the direct vicinity
of the target values is defined as the final convergence.
For each problem examined, the number of sweeps that
are required for the initial approach will be given for
both methods. The figures, in which the performance
error, defined as 2.2(z; . — 1;.)% (see eqn (4)), is plot-
ted against sweep number, show the convergence be-
havior of the original and modified method for different
problems.

3.1.1. The XOR problem. The exclusive-or (XOR)
problem was presented to a network consisting of a
layer of two input units, a layer of two hidden units,
and one output unit. Ten different initializations of the
network were generated using an uniform distribution
between —1.3 and 1.3. The original back-propagation
method using a n = 2.6 and an a = 0.9 required on
average 64 (standard deviation (¢) = 29) sweeps
through the four input vectors while the modified
method using an an 7 = 0.7 and an « = 0.8 required
on average 61 sweeps (o = 24). Thus, with this relative
simple problem both methods achieve a solution (initial
approach) after about the same number of sweeps. The
final convergence to the solution is, of course, much
faster with the modified method.

3.1.2. The encoding problem. This is a problem in
which a set of orthogonal input vectors are mapped to

A. van Ooyen and B. Nienhuis

a set of orthogonal output vectors through a small set
of hidden units (Ackley, Hinton, & Sejnowski, 1985).
The network used here consists of eight input units,
three hidden units, and eight output units, and is to
learn the identity mapping. In each of the eight input
vectors precisely one of the input units has activation
one and the remaining units have activation zero. The
corresponding target output vector has exactly the same
activation pattern. The network is thus to learn an en-
coding of an eight bit input vector into a three bit pat-
tern and its decoding into an eight bit output vector.
Ten different initializations of the network were gen-
erated. Initial approach was reached after on average
153 sweeps (¢ = 45) with the original method using a
n = 1.9 and an o = 0.6, while on average 91 sweeps (¢
= 27) were required with the modified method using
ayn = 0.7 and an « = 0.3. With the original method,
there is a period at the beginning of each run in which
the total error changes only slowly (appearing as a pla-
teau in figure 1). With the modified method, this period
is shorter, as a result of which the initial approach is
faster.

3.1.3. The F-function. For this function, we consider a
k-dimensional matrix X of size »*. The binary {0,1}
entries of X are denoted as x(i,, i», i3, ..., i;). Now,
on matrix X the F-function (Wegener, 1987) is defined
as:

=1, (21)

ininds, ... ik

Fin(x) = 1iff 3, Vi, 3iy ... Qi x,

where Q = V for k is even and Q = 3 for k is odd. This
function can easily be implemented in a multilayered,
feedforward network that consists of alternating layers
of AND and OR cells, and one layer of input cells whose
activation represent the entries of matrix X. For ex-
ample, to construct a network that is to perform the
F, ¢ function, one would need a 4-layered network con-
sisting of eight input cells, a layer of four OR cells, a
layer of two AND cells, and, finally, one OR cell, whose
output determines whether or not F;3 = 1. Here, the
problem of learning the F;g function was posed to a
3-layered network so that the network cannot simply
develop AND and OR units. We used a network con-
sisting of eight input units, five hidden units, and one
output unit. At each sweep, the whole set of 28 input
vectors was presented. Five different initializations of
the network were generated. The modified method us-
ing an = 0.02 and an a = 0.7 turned out to be two to
three times as fast as the original method using a =
0.03 and an « = 0.8. The initial approach required on
average 99 sweeps (o = 41) with the modified method
and on average 212 sweeps (o = 70) with the original
method. Again, the acceleration is mainly due to the
fact that the ‘plateaus in error,” in which the total error
changes only slowly, are shorter (see figure 2).

Improving the Back-Propagation Algorithm

81(11]1x||||x|||1x||

[&)]
T T

PR RSN S S S SRS Y S S

PERFORMANCE ERROR
~
T T [T T T I T T

0 100 200 300 400
SWEEP NUMBER

—
)
~

8 T

T T T LA S S R B B

IR S TN R R

1

PERFORMANCE ERROR

LA AL L) BN B B B

L

| |

0 100 200 300 400
(b) SWEEP NUMBER

FIGURE 1. Convergence behavior for the encoding problem
using the original back-propagation method (a), and using the
modified method (b). Runs starting from ten different initial-
izations of the network are shown.

3.1.4. The counting problem. For the counting problem
the network is to count the number of input units that
are on, and to generate a unary representation of this
number in the output layer. The specific problem used
here is counting the number of 1’s in an input vector
of length 4 using a network of four input units, four
hidden units, and five output units. In each of the 16
target vectors, precisely one desired state of the output
units has activation one while the remaining units have
activation zero. Only the “first” output unit should be
active if there are no 1’s occurring in the input vector,
only the second if there is one 1 in the input vector,
only the third if there are two 1’s, etc. Using a n = 0.6
and an « = 0.7, initial approach with the original
method was achieved within 1,000 sweeps (through
the 16 input vectors) in only 4 out of 10 different runs.
Of these, two runs required more than 900 sweeps (913
and 968). The other two runs required 324 and 217
sweeps. Of the other six runs, one run required about
3,500 sweeps to achieve initial approach. For the rest,
initial approach was not achieved after more than
10,000 sweeps. With the modified method, using a

469

7 = 0.2 and an « = 0.6, initial approach was achieved
after less than 230 sweeps for as many as 8 runs (average
number of sweeps required by these eight runs is 188,
¢ = 19). Only two runs required more sweeps (752
and 1048). Of all the problems we studied so far, the
counting problem most convincingly demonstrates the
improved performance obtained by using the modified
method. Figure 3 shows that, with the original method,
the network encounters ‘plateaus,” in which the total
error changes extremely slowly. With the modified
method, these plateaus are much shorter or do not exist
at all.

4. CONCLUSIONS AND DISCUSSION

In this paper, we have demonstrated that a simple
modification to the back-propagation algorithm accel-
erates its convergence. The modification amounts to
changing the total error function that is to be minimized
by the algorithm. As a result the error signal produced
by an output unit is now directly proportional to the

60 T
o L |
(@]
% L .
Li 40 + —
L L 4
(@]
=z L 4
<
= F i
Kootk .
[
. |
L_I .
e L

0 N W NN N AN SN SN SO H SONY SO Y N AUV S S

0 50 100 150 200

(a) SWEEP NUMBER

60 I T T T T T T T T I T T T T T T T T
(o L 4
@]
(% - i
ol 40 - -
Led L 4
O
= - 4
<C
= - i
&S 20| -
L
= L i
L
N L i

0 _I TR R B t — |

0 50 100 150 200

(b) SWEEP NUMBER

FIGURE 2. Convergence behavior for the F-function problem
using the original back-propagation method (a), and using the
modified method (b). Runs starting from five different initial-
izations of the network are shown.

470

5]
o C]
o 4 r ~
[a r 4
e r]
i} r 1
w3 -~
& C]
zZ C]
% N]
g 21 .
o L]
|_|_ . -
o -]
2 OTF E
N
o X —
0 500 1000
(a) SWEEP NUMBER
S
o L
o 4+
& N
o C
L L
w 3
& _
=z C
<§E L
z 2 -
o -
[-
o1
& C
0 t L
0 200 400
(b) SWEEP NUMBER

FIGURE 3. Convergence behavior (shown from sweep number
is about 100) for the counting problem using the original back-
propagation method (a), and using the modified method (b).
Runs starting from ten different initializations of the network
are shown.

difference between the actual activation of the unit and
its target value. A strong error signal is produced also
when an output unit approaches the value 0 or 1, pro-
vided it is not the target value. With the original al-
gorithm, only a very small error is produced when an
output unit approaches a wrong extreme value, which
slows down the convergence.

With the modified method, the initial approach as
well as the final convergence are faster. The acceleration
of the final convergence was shown analytically and by
simulation on binary problems. In all the problems we
studied so far, the initial approach is faster or is at least
the same. The performance is most improved in difficult
problems. With the original method, there are periods
of stagnation, during which the performance of the
network improves only slowly. They were observed in
all the problems but most clearly in the counting prob-
lem. With the modified method, the initial approach
is faster mainly because these periods of stagnation are
much shorter in time or do not exist at all.

A. van Ooyen and B. Nienhuis

Closely studying the behavior of the network revealed
that by competition some output units can be pushed
towards the wrong extreme value while other units are
reaching there target value and thus decreasing the total
error. With the original method, there is only a small
error signal for an output unit being near the wrong
extreme value. As a result, the network can continue
to move towards a state whose response is correct for
all but a few cases. Because the signal that is propagated
backward is very small, the performance of the network
hardly improves: a plateau in error arises. As soon as
the network is responding correctly for most cases, the
small error produced by units that are near the wrong
extreme value for the few remaining cases, can be no-
ticed and dealt with. (Note that Aw is a sum over all
changes in coupling strength that are calculated for each
case separately). The network now adjusts the coupling
strengths, albeit slowly because initially the error signal
is very small. During this process. the total error is
hardly changing until a certain threshold is reached
after which the network changes exponentially. When
this state is reached depends on how far the output
units are pushed to the wrong extreme value. After
escaping from one plateau, the network can possibly
encounter a new one, as was observed in the counting
problem. This, of course, further delays convergence.
With the modified method on the other hand, plateaus
in error are not likely to occur because a strong error
signal is propagated as soon as the output units are
approaching the wrong extreme value. One might say
that with the modified algorithm competition among
cases and among units is more balanced.

We have not carried out simulation studies to com-
pare this method of improvement with other acceler-
ation schemes. Adaptive schemes, which adjust the
learning parameters to the local error landscape in order
to avoid convergence delays, approach the problem
from the symptomatic side. Our method takes away the
cause of a part of those convergence delays.

REFERENCES

Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning
algorithm for Boltzmann machines. Cognitive Science, 19, 147-
169.

Fahlman, S. (1987). An empirical study of learning in back-propa-
gation networks (CMU-CS-88-162). Department of Computer
Science, Carnegie Mellon University, Pittsburgh, PA.

Golden, R. M. (1988). A unified framework for connectionist systems.
Biological Cybernetics, 59, 109-120.

Hinton, G. E. (1987). Connectionist learning procedures (CMU-CS-
87-115). Department of Computer Science Technical Report,
Carnegie-Mellon University, Pittsburgh, PA.

Jacobs, R. A. (1988). Increased rates of convergence through learning
rate adaption. Neural Networks, 1, 295-307.

Rigler, A. K., Irvine, J. M., & Vogl, T. P. (1991). Rescaling of variables
in back propagation learning. Neural Networks, 4, 225-229.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986a). Learning
representations by back-propagating errors. Nature, 323, 533—
536.

Improving the Back-Propagation Algorithm

Rumethart, D. E., Hinton, G. E., & Williams, R. J. (1986b). Learning
internal representations by error back propagation. In D. E.
Rumelhart & J. L. McClelland (Eds.), Parallel distributed pro-
cessing: Explorations in the microstructure of cognition. Vol 1:
Foundations (pp. 318-362). Cambridge, MA: MIT Press.

Sejnowski, T. J., & Rosenberg, C. R. (1987). Parallel networks that
learn to pronounce English text. Complex Systems, 1, 145-168.

Tolleneare, T. (1990). SuperSAB: Fast adaptive back propagation with
good scaling properties. Neural Networks, 3, 561-573.

Vogl, T. P., Mangis, J. K., Rigler, A. K., Zink, W. T., & Alkon, D. L.
(1988). Accelerating the convergence of the back-propagation
method. Biological Cybernetics, 59, 257-263.

Wegener, 1. (1987). The complexity of Boolean functions. Stuttgart:
Wiley/ Teubner.

Zipser, D., & Andersen, R. A. (1988). A back-propagation pro-
grammed network that simulates response properties of a subset
of posterior parietal neurons. Nature, 331, 679-684.

NOMENCLATURE

X; Activation of unit j of the input layer
¥, Activation of unit j of the hidden layer
z; Activation of unit j of the output layer

=

RSz

471

Desired output value of unit j for input case ¢

Activation function of unit j as function of its cou-
pling to cells in previous layers and of their ac-
tivation

Threshold or bias of unit j of the hidden layer

Threshold or bias of unit j of the output layer

Coupling strength from unit / in the hidden layer
to unit j in the output layer

Coupling strength from unit / in the input layer
to unit j in the hidden layer

The error function (i.e., the accumulation of a
measure of all the deviations from the desired
output, summed over the cases and output
units)

Number of cases, or different input configurations
for which a specific output activation is desired

Number of units in the input layer

Number of units in the hidden layer

Number of units in the output layer

Learning rate

Momentum factor

