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2.1 INTRODUCTION TO PATTERN DETECTION

The purpose of most pattern detection methods is to represent the variation in a
data set in-a more manageable form by recognising classes or groups. The data
typically consist of a set of objects described by a number of characters. An object
could be (e.g.) a strain of bacteria, while a character could define how well a strain
of bacteria grows on a particular C-source, or whether a strain of bacteria contains
a particular protein.

If the objects were always described by only two or three characters, there would
not be much need for pattern detection methods. Just plotting the data in two
or three dimensions, respectively, would be sufficient to distinguish groups (the
number of dimensions is the number of axes that are needed in order to plot the
data, with one axis for each character). However, typically, objects are character-
ised by more than three characters, so that simply plotting the data is not possible.
Other ways need to be found to represent the data.

©2001 Elsevier Science B.V. All rights reserved.
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Fig. 2.1. Simple example illustrating principal component analysis (see text).

There are two main approaches that can be taken to manage large data sets. The
first involves reducing the number of characters by finding two or three new char-
acters that are combinations of the old characters. Using these new characters,
the data can again be plotted in two or three dimensions, and groups can be dis-
tinguished by visual inspection. This is the approach taken by principal compo-
nent analysis (see section 2.2). The second approach for managing large data sets
does not reduce the number of characters, but involves a stepwise reduction in the
number of objects by placing them into groups. This is the approach taken by clus-
ter analysis (see section 2.3).

In this chapter, simple examples of both principal component analysis and clus-
ter analysis will be given to explain the ideas behind the methods. Detailed reviews
of pattern detection methods and their applications can be found elsewhere (Sokal
& Sneath, 1963: Sneath & Sokal, 1973; Bock, 1974; Hogeweg, 1976a; Aldenderfer
& Blashfield, 1984; Everitt, 1993; Applied Maths, 1993).

2.2 PRINCIPAL COMPONENT ANALYSIS

Principal component analysis studies large data sets by reducing the number of
characters. This is achieved by forming new characters that are combinations of
the old ones. A simple example can be used to illustrate the principle behind the
method. In the example, the number of characters will be reduced from two to one.
In real applications, the method would be used to reduce the number of characters
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from “many” to two or three.

In Fig. 2.1, a number of objects characterised by only two characters are plot-
ted. The space spanned by the two axes is called the character space, which in this
case is two-dimensional (i.e., has two axes, the x- and y-axis) as there are only two
characters. A line then needs to be drawn so that the variance among the points
when projected on to this line will be as large as possible (this line is called the first
principal component). This ensures that as much information as possible about the
original data set will be retained. When this line has been found, all the points are
projected on to it. On this line (i.e., the reduced character space), it may be pos-
sible to distinguish clusters by visual inspection. This new line, or character, can
be interpreted in terms of the contributions that the original characters have made
to it.

When principal component analysis is used to reduce the number of characters
from “many” to two or three, not only the first but also the second and third prin-
cipal components ar¢ calculated, and the points are projected, noton to a line, but
on to a two- or three-dimensional character space.

2.3 CLUSTER ANALYSIS

In contrast to principal component analysis, cluster analysis does not reduce the
number of characters, but involves a stepwise reduction in the number of objects
by placing them into groups. An agglomerative clustering method starts with as
many clusters as there are objects (each cluster thus contains a single object), and
then sequentially joins objects (or clusters), on the basis of their similarity, to form
new clusters. This process continues until one big cluster is obtained that contains
all objects. The result of this process is usually depicted as a dendrogram, in which
the sequential union of clusters, together with the similarity value leading to this
union, is depicted. A dendrogram, therefore, does not define one partitioning of the
data set, but contains many different classifications. A particular classification is
obtained by “cutting” the dendrogram at some optimal value (defined relative to
the dendrogram). In order to interpret the pattern(s) revealed by the cluster analy-
sis, each pattern is studied to determine its relationship with several characteristics
of the objects, including characteristics that were not part of the data set proper.
i.e., so-called label information such as epidemic sites of origin of strains, dates of
sampling, etc.

To illustrate the clustering process, a simple example will be given in the next
section, followed by a general protocol for cluster analysis and a description of dif-
ferent similarity measures and clustering methods.

A. A simple example of cluster analysis

The following example illustrates the whole clustering protocol, from the basic
data to the formation of a dendrogram (Fig. 2.2). The data set consists of only four
objects, each described by only two characters (Fig. 2.2a). Thus, each object is
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Fig. 2.2. Simple example illustrating the protocol for cluster analysis (see text): (a) data set. consist-
ing of four objects, each characterised by two characters; (b) objects plotted in character space; (€)
similarity matrix showing dissimilarity between objects; (d) and (e) derived similarity matrices used
in successive steps of the clustering process; (f) dendrogram.

characterised by the values it takes on for these two characters. The objects could
be (e.g.) four strains of bacteria, and the characters could (e.g.) describe how well
the different strains grow on two different C-sources. Fig. 2.2b shows what the
data look like when plotted. The x-coordinate of an object (point) is taken to be
the value that the object takes on for character one, and the y-coordinate is the
value that the object takes on for character two. As explained earlier, the space
spanned by the two axes is called the character space, which in this case is again
two-dimensional (i.e., has two axes, the x- and y-axis) as there are only two char-
acters. In general, there are as many dimensions (i.e., axes) as there are different
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characters. Plotting objects that are characterised by more than three characters 18
not possible because it would require more than three axes. Although these data
cannot be plotted, they can still be treated mathematically in the same way. The
advantage of this simple example is that the data and the clustering process can be
easily visualised.

The aim of the clustering procedure is to join the objects (i.e., points in the
figure) into clusters, or groups, of similar objects. Two objects will be similar if
they are close together in character space. Thus, the first step in any clustering pro-
cedure is to determine the similarity between each pair of objects. In order to deter-
mine the similarity between two objects, a similarity measure is required. In prin-
ciple, there are a large number of different measures that can be used. For example,
the distance between two objects in character space can be used as a measure of
their similarity (or rather dissimilarity). In this example, an even simpler similar-
ity measure will be used. The similarity between, for example, objects 1 and 2, is
defined as the difference in the values for the first character plus the difference in
the values for the second character. This is what is called city-block distance and
can be expressed formally for this example as

D, ; jlcl,i - Cl.11 +1C2,i = CZ,j" (D

J

where D, is the dissimilarity between objects i and j, and C | is the value that
object i takes on for character 1. The fact that absolute differences are taken is
indicated by | ... | Using equation (1), the similarity between each pair of objects
is determined, which yields a so-called similarity matrix (Fig. 2.2¢). This matrix
will have a triangular shape because the similarity between, €.g., objects 1 and 2 is
the same as the similarity between objects 2 and 1. The clustering of objects starts
by joining the objects that are most similar to each other, i.e., that have the lowest
value in the similarity matrix. In this case, objects 1 and 2 are most similar to each
other, and these will be joined to form the first cluster. The new situation is then a
cluster consisting of objects 1 and 2 (which is denoted as cluster {1,2}), and two
single objects, 3 and 4. The cluster can then be treated as a new object.

The next step is to calculate a similarity matrix for the new situation. To do
this, the similarities between the cluster and the two single objects need to be cal-
culated, i.e., the similarity between object 3 and cluster {1,2}, and the similarity
between object 4 and cluster {1,2}. The similarity between objects 3 and 4 is, of
course, not changed. In this example, the similarity between object 3 and cluster
{1,2} is simply defined as the average of the following two similarities: (a) the
similarity between object 3 and object 1, and (b) the similarity between object 3
and object 2. In the same way, the similarity between object 4 and cluster {1,2}
can be defined. Thus,

Dyt D
Dy _J_'z_ﬁ . (2)

where D, , ,, is the similarity between object 3 and cluster {1,2}. Similarly,




D _ Dy, + Dy
O LY R

where D, |, 18 the similarity between object 4 and cluster {1,2}.-

There aré other ways to define the similarity between single objects and clusters
of objects, and the method used to calculate the new similarity is what is called the
clustering criterion or clustering method. In the new similarity matrix (Fig. 2.2d),
the lowest value is again searched for, which is that between objects 3 and 4, and
these objects are subsequently joined. Again a new similarity matrix is calculated,
which now consists only of the similarity between cluster {1,2} and cluster {3.4}
(Fig. 2.2¢). Using the same clustering criterion as before, we obtain

3)

D +D
i1,2},3 {1,2},4
D{l,z}‘{3,4} :r—i—#—- )

The similarities D, 5 and D, , are given by equations (2) and (3), respectively
(note that by defimtion D ,, = 1 I and Dy, .= D)

The sequential union of points (groups) is now depicted in a dendrogram
(Fig. 2.2f). First, objects 1 and 2 are joined. In the dendrogram, the level at which
objects 1 and 2 are connected is the dissimilarity level in the similarity matrix that
led to their union. Then, objects 3 and 4 are joined, and finally clusters {1,2} and
(3,4}. In the dendrogram, the level at which the clusters are joined is the similar-
ity value as calculated in equation (4); this is a measure for the similarity between
cluster {1,2} and cluster (3.4}. Thus, the similarity between, for example, objects
2 and 4 is not shown in the dendrogram.

B.  General protocol for cluster analysis

Keeping in mind the previous example, the general procedure for clustering is as

follows (Fig. 2.3):

1. Data set. The starting point is a data set of objects that are described by the
values they take on for a number of characters.

2. Transformation. Before calculating a similarity matrix, it may first be necessary
to transform the data. This is necessary if the characters are qualitatively differ-
ent or are expressed in different units. Transformation ensures that equal weight
is given to all characters.

3. Similarity matrix. The next step is to choose a similarity measure and calculate
the similarity between each pair of objects, yielding a triangular similarity
matrix. Similarity measures are usually distance measures, but can also be
derived from (e.g.) correlation coefficients. For electrophoresis data, the simi-
Jarity between two objects can be expressed as the correlation between their
banding patterns.

4. Clustering. Once the clustering method has been chosen — which is basically
the formula that defines how to calculate the cluster-to-cluster similarities (and
object-to-cluster similarities) from the basic object-to-object similarities — the
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i Fig. 2.3. The general protocol for cluster analysis (see text): (a) data set; (b) data set after transforma-
i tion: (¢) similarity matrix; (d) dendrogram.

similarity matrix can be used to form clusters.

5. Dendrogram. The result of this sequential joining of clusters is depicted in a
dendrogram. In a dendrogram, the sequential union of objects and clusters is
represented, together with the similarity value leading to this union. A dendro-

| gram, therefore, does not define one partitioning, or grouping, of the set of
objects, but contains many different partitionings of the set of objects. A par-

% ticular partitioning can be obtained by “cutting” the dendrogram at some opti-

mal value, defined relative to the dendrogram. For criteria to determine this
cut-off value, see (e.g.) Blanc ef al. (1994) and Hogeweg (1976b). In interpret-
ing the groupings obtained, so-called label information can play an important
role. Label information is basically all the information that is known about the
objects which was not actually used in the clustering process itself (i.e., in deter-
mining the similarity between objects). Label information includes (e.g.) date
of sampling, place of sampling, the date of analysis of the sampling, etc. It may
be found — sometimes unexpectedly or unwanted — that the groupings obtained
in the cluster analysis correlate with certain label information.

In the next sections, some of the most frequently used similarity measures and
clustering methods will be briefly described.
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C.  Similarity measures

(1)  City-block distance
The similarity measure used in the simple example, the city-block distance (or
character difference), is given by
N
Dz‘,j = ‘Ck,i & Cfc,j” (®))
k=1
where D, i is the dissimilarity between objects i and j, N is the total number of char-
acters, and C_, is the value that object i takes on for character & (index & runs from
1to N). To calculate the mean city-block distance, the total number of characters
is used as the denominator, i.e.,

i.j N}\ZJC.%: r A,-‘]‘ (6)

(ii) Euclidean distance
The distance between two objects in character space is used as a measure of their
dissimilarity:

N
D, ; :JZ (G —Crp)° (7

where D, is the distance between objects 7 and j, and C, | is the value that object i
takes on for character k (that D, ; represents distance can eaqlly be seen for N =2,
using the Pythagorean theorem). To avoid the use of the square root, the value of
the distance is often squared, and this expression is referred to as “squared Eucli-
dean distance”.

In comparing electrophoresis patterns, the matrix of similarities can be based
either on the Pearson correlation coefficient or on one of the band-matching coef-
ficients (Applied Maths, 1998).

(iii) Pearson or product-moment correlation coefficient

The similarity between two objects is calculated as the correlation between the
two arrays of character values (typically densitometric values) taken on by the two
objects:

N - -
Z(Ck,f -C)C;-C))
Sy =—=L= : (8)

\/Z(C;“ C)Z(C;” c)

k=1

where S, is the similarity (i.e., correlation coefficient) between objects i and j, C, -
is the value that object i takes on for character k, and C is the mean of all the
character values of object i. The value of the correlation coefficient ranges from
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+1 for perfect association to —1 for negative association; a value of 0 indicates that
there is no association. That a correlation of 1 means perfect association can be
seen by correlating object i to itself, i.e.,

N _ o N _
¥ (Cri —CXC; —C) Y(c, ~-G)
8, = =k = &l =l 9)

N A N = e
\/Z(Ck'f—cf)zz(ck,i_a)z Z(Ck,i‘C;)
k=1 k=1

k=1

The correlation coefficient is a shape measure; Le., it is sensitive to the pattern
of dips and rises across the character values. Two profiles can have a correlation
of +1 and yet not be truly identical (i.e., take on the same values). This occurs, for
example, when the two profiles have the same pattern of dips and rises, but one
profile is elevated compared to the other (see also Chapter 3).

(iv) Band-based similarity coefficients

(a) Coefficient of Jaccard. The similarity between two tracks of bands is the
number of matching bands divided by the total number of bands in both tracks (i.e.,
the corresponding bands plus the track-specific bands):

S = — N 10

& H; 1y~ (10}
where S, ;is the similarity between tracks i and j, . is the number of corresponding
bands for i and j, n_is the total number of bands i in i, and . is the total number of
bands in j. So n, + n — n_is the total number of bands in both tracks, not double
counting the correspondmg ones. If all bands in i match those in j, then S, = 1.

(b) Area-sensitive coefficient. This is a more sophisticated similarity measure,
which also takes into account the possible differences in areas of the matching
bands:

4; ;
S, =————, (11)
- n; thg =R

where

A=y ——" (12)

=10+ - B j!k|

where ¢ is a constant, and | B B - | is the absolute difference between the areas
of the k-th corresponding band in and j» where k runs from 1 to n, . Thus, dif-
ferences in band areas of the corresponding bands are penalised. If the areas of
all corresponding bands of both tracks are equal, this coefficient is reduced to the
coefficient of Jaccard: if B, = B, forallk, 4, ;=3 " 1=n,




Fig. 2.4. UPGMA or group average (see text). The dissimilarity between an object or cluster &, and a
cluster / formed by joining objects or clusters i and j, is the average of the dissimilarities between k
and i, and between k and j, weighted for the number of points in clusters i and j.

(c) Dice coefficient. The Dice coefficient is very similar to the coefficient of Jac-
card, but gives more weight to matching bands:

2n

=
n; +n;

» : (13)
where §,_ is the similarity between tracks i and j, n . is the number of matching

bands for i and J» 1, is the total number of bands in i, and n, is the total number of
bands in ;.

D.  Clustering methods

(i) UPGMA or group average

This similarity measure, termed the unweighted pair group method using arithme-
tic averages (UPGMA), was used in the simple example discussed earlier in this
chapter. It states that the dissimilarity between an object or cluster k, and a cluster
[ formed by joining objects or clusters i and j, is simply the average of the dis-
similarities between k and /, and between k and j (taking into account the number
of points in clusters i and j ) (Fig. 2.4). This is given by the formula

N.Dy; +N;D,
SN +N,

where k is the index used for an existing cluster or object, [ is the index used for

(14)




Fig. 2.5. With Ward’s clustering method, a cluster of aberrant points (in this example, the cluster with
two points) is often found which have nothing in common with cach other except that they are dis-

similar to the other objects.

the newly formed cluster, D, , is the dissimilarity between k and [, N, 15 the number
of objects in cluster i, and N, is the number of objects in cluster j. This clustering
method effectively leads to minimisation of the average dissimilarity between the
objects in a cluster. This interpretation holds for all types of similarity measures.
The clustering structure is less pronounced and the clusters are more limited in
diameter than with Ward’s clustering method (see below).

(ii) Ward's averaging

With Ward’s averaging, those clusters (objects) are joined which lead to a minimal
increase in the total within group variance. This results in the following proper-
ties of the method: (a) a cluster of aberrant points is often found which have noth-
ing in common with each other, except that they are dissimilar to the other objects
(Fig. 2.5); (b) more groups arc distinguished in dense areas of the character space
(i.e., where most of the objects are); and (c) every data set shows a clear cluster
structure, which does not necessarily imply that there are clear separations.

2.4 EXAMPLES OF APPLICATIONS OF CLUSTER ANALYSIS

Among the many possible areas of applications, pattern detection techniques are
now widely used in both taxonomy and epidemiology. In taxonomy, the objective
is to classify organisms into genera and species on the basis of their genotypic or
phenotypic relationships (i.e., taxonomy is not necessarily limited to identifying
relationships by ancestry); in epidemiology, the objective is confined to identify-
ing bacterial isolates in terms of their recent ancestry (i.e., their epidemiological
origin). Many examples of both applications can be found throughout this book. In
this chapter, just three examples are given to illustrate the various goals of cluster
analysis.

The first example (Coenye et al., 2000) shows how cluster analysis used on dif-
ferent types of data, in combination with the evaluation of the groups obtained in
terms of label and other information, can help to unravel the taxonomy of micro-
organisms. A polyphasic taxonomic study was performed on a group of isolates
:dentified tentatively as Burkholderia cepacia, a bacterial pathogen that causes
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life-threatening lung infections in cystic fibrosis patients. Using cluster analysis
with the Pearson or product-moment correlation coefficient as the similarity meas-
ure, and UPGMA as the clustering method, analysis of SDS-PAGE fingerprints of
whole-cell proteins (see Chapter 4) and AFLP fingerprints (see Chapter 8) identi-
fied at least five different species, and this was confirmed by DNA-DNA hybridisa-
tion experiments. Based on genotypic and phenotypic characteristics, these organ-
isms were then classified in a novel genus, Pandoraea.

The second example (Sloos et al., 1998) demonstrates the application of cluster
analysis to microbial epidemiology. The diversity of strains of Staphylococcus epi-
dermidis in a neonatal care unit of a secondary care hospital in The Netherlands
was studied. Samples were taken consecutively from patients, and the isolates
obtained were typed by pulsed-field gel electrophoresis (PFGE; see Chapter 7)
and quantitative antibiogram analysis. The antibiograms were used to group the
organisms (Fig. 2.6), using squared Euclidean distance as the similarity measure
and Ward’s averaging as the clustering method. The main grouping obtained was
evaluated for its correlation with other characteristics of the individual isolates,
including PFGE type, length of stay, usage of antibiotics, birth weight and cubicle
number. Thus, these characteristics of the isolates were not used in the generation
of clusters. but were used as label information to help interpret the grouping. The
cluster analysis revealed that 14 isolates from six patients had a common PFGE
pattern and were of one multiresistant antibiogram type. The remaining isolates
belonged to a variety of PFGE types and were more susceptible to antibiotics.
Colonisation with the multiresistant strain correlated with a long period of stay and
with the use of specific antibiotics. Cluster analysis on the basis of antibiograms
was also performed on a combined collection that included multiresistant strains
from another hospital in the same area. This analysis revealed that the multiresist-
ant strains from both hospitals were closely related, and suggested that transfer of
the multiresistant strain had occurred between hospitals.

In the third example (Blanc et al., 1996), cluster analysis of quantitative antibio-
grams was performed to test whether a typology based on antibiograms would cor-
respond to typologies based on other characteristics. It was found that the group-
ing obtained by cluster analysis of antibiograms was equivalent to the grouping
obtained by ribotyping (see Chapter 5) when the ribotyping was used as label
information to evaluate the clusters.

2.5 DISCUSSION

Cluster analysis is a procedure that starts with a data set containing information
about a set of objects, and then attempts to organise these objects into groups that
are in some sense optimal for the data set under consideration. Cluster analysis can
be used for a variety of goals (Aldenderfer & Blashfield, 1984), including develop-
ing typologies or classifications, generating concepts or hypotheses through data
exploration. and testing whether typologies or classifications generated by other
procedures. or by using other data, are present in the data set under consideration.
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Fig. 2.6. Strain characteristics (left), antibiogram susceptibility profiles (middle), and grouping of
53 Staphylococcus epidermidis isolates of neonates on the basis of zone diameters (right). Squared
Euclidian distance was calculated between all possible pairs of zones, and arouping was performed
using Ward’s method. The dotted line denotes the distance at which four clusters are delineated. The
inhibition zones were used for classifying isolates into “susceptible” (green), “intermediate resist-
ant” (blue), or “resistant” (red) categories for each antibiotic, using the standard Dutch criteria for
susceptibility determination. Taken from Sloos et al. (1998).

These goals are illustrated, respectively, by the studies of Coenye et al. (2000),
Sloos et al. (1998) and Blanc et al. (1996), as described above.
Although pattern detection is sometimes regarded as yet another form of statis-
tics, there are important conceptual differences (Hogeweg, 1976a):
1. In statistics, deviations from randomness in the data set are looked for, while in
pattern detection the structure in the data set is sought. Note that a random data
set can also have structure!
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2. In statistics, attempts are made to make sample-independent statements. The
data under consideration are assumed to be a random sample of the whole popu-
lation, and the objective is to make statements about the whole population by
looking at a representative sample of the population. Ideally, these statements
should not change if a different random sample is taken from the population.
In pattern detection, the data set under study is not considered a sample from
a larger population but is considered all there is. A different structure may be
found if new data is added (e.g., in taxonomy when new species are discov-
ered).

3. In statistics, groups (and an underlying distribution) are pre-supposed and tests
are made to determine whether these groups differ significantly from each other
(i.e., more than can be expected on the basis of random fluctuations alone),
while in pattern detection, groups are generated per se. In other words, con-
cepts are fested in statistics (i.e., attempts are made to answer the question as
to whether pre-supposed groups are different), while concepts (i.e., groupings)
are generated in pattern detection. Descriptive statistics may be used in pattern
detection for characterising the grouping obtained in cluster analysis.

Cluster analysis can best be seen as a heuristic, rather than a statistical, method for
exploring the diversity in a data set by means of pattern generation. The result of
a cluster analysis study can, and usually does, depend on the similarity measure
used, the clustering method used, the set of objects in the study, the characters
used to describe the objects, and the relative weight different characters are given
in calculating the similarity between objects (see Hogeweg, 1976b; Van Ooyen &
Hogeweg, 1990). Rather than trying to find the “right” pattern or classification,
the differences in the patterns as revealed by the cluster analysis should be used to
gain further understanding of the objects under study (see also Hogeweg, 1976a).
Used in this heuristic way, cluster analysis is a powerful tool for data exploration
in taxonomy and epidemiology, as well as in many other areas such as functional
genomics.
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