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Abstract. Applying bounded weight-independent temporal plasticity
rule to synapses from independent Poisson firing presynaptic neurons
onto a conductance-based integrate-and-fire neuron leads to a bimodal
distribution of synaptic strength (Song et al., 2000). We extend this
model to investigate the effects of spreading the synapses over the den-
dritic tree. The results suggest that distal synapses tend to lose out to
proximal ones in the competition for synaptic strength. Against expecta-
tions, versions of the plasticity rule with a smoother transition between
potentiation and depression make little difference to the distribution or
lead to all synapses losing.

1 Introduction

This paper deals with two phenomena. The first, spike-timing dependent plas-
ticity (STDP), is observed in various preparations (Markram et al., 1997; Bi and
Poo, 1998; Abbot and Nelson, 2000). The relative timing of individual pre- and
postsynaptic spikes can alter the strength of a synapse (“weight”). The size of the
change also depends on the weight, with stronger synapses being depressed more
and potentiated less. The second phenomenon is dendritic filtering of synaptic
inputs and action potentials. Excitatory postsynaptic potentials (EPSPs) evoked
at a synapse are attenuated and spread out temporally on their way to the soma.
The dendritic tree also filters backpropagating action potentials (Spruston et al.,
1995). The effects of filtering are more pronounced at more distal locations on
the dendritic tree.

Theoretical work has suggested that when STDP along with upper and lower
bounds on each weight operates at synapses onto a single postsynaptic neuron,
the synapses compete with each other to grow strong, leading to a bimodal weight
distribution (Song et al., 2000). This model used a conductance-based integrate-
and-fire neuron. The aim of this paper is to discover whether the synapse’s
location on the dendritic tree affects its ability to change its strength. To do
this, we incorporate dendritic filtering and the delay of backpropagating action
potentials into the Song et al. (2000) model. A key assumption is that changes
to a synapse depend only on signals local to it.
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In Sect. 2 we present the neuronal model. In Sect. 3 describe the weight-
independent synaptic plasticity rule we use. We look at the behaviour of the
rule in Sect. 4. Finally, in Sect. 5, we discuss the implications of this work.

2 The Neuron Model

We study a single conductance-based integrate-and-fire neuron with NE mod-
ifiable excitatory synapses and NI non-modifiable inhibitory synapses onto it.
Presynaptic spikes are generated according to a Poisson process at a rate fE for
the excitatory inputs and fI for the inhibitory inputs. In this paper fE = 40 Hz
and fI = 10 Hz.

In order to model the effects of forward and backward filtering, each exci-
tatory input i is allocated a distance xi away from the soma. The distance of
each synapse is chosen randomly from a uniform distribution between 100µm
and 300µm. The distance of synapse away from the soma affects the attenuation,
delay and time constants of conductance changes evoked at the synapse, as well
as the time taken for a backpropagating action potential to reach the synapse
from the soma. Inhibitory inputs are assumed to be directly onto the soma.

When a spike arrives at an excitatory synapse there is a delay of ∆orth(xi)
before it increases the conductance gex,i(t) in the soma by an amount a(xi)gi

where gi is the synapse’s maximum conductance (or “weight”) and a(xi) is a
distance-dependent attenuation factor. Inbetween spikes the conductances obey
the first-order differential equation

τex(xi)
dgex,i

dt
= −gex,i (1)

where τex(xi) is the time constant of the conductance, which depends on location
on the dendritic tree.

Similar equations are obtained for the inhibitory conductances gin,i except
that there are no delays or attenuation factor, the time constant is uniformly τin
and the non-modifiable weights are set to gin = 0.05.

The membrane potential V is governed by the update rule

τm
dV

dt
= Vrest − V +

∑
i

gex,i(Eex − V ) +
∑

i

gin,i(Ein − V ) (2)

where τm = 20 ms is the membrane time constant, Vrest = −70 mV is the resting
potential, Eex = 0 mV is the reversal potential of the excitatory synapses and
Ein = −70 mV is the reversal potential of the inhibitory synapses. When the
membrane reaches a threshold θ = −54 mV, the neuron fires an action potential
and is reset to Vreset = −60 mV.

In order to find how the attenuation factor a(xi), the dendritic delay∆orth(xi)
and the conductance time constant τex(xi) depend on distance we used the data
of Magee and Cook (2000). From their measurement of the relative size of EPSPs
at the site of initiation and at the soma, we described the attenuation factor by

a(x) = 1− x

375
. (3)
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Fig. 1. a. Fit (solid line) of proximal (100µm) EPSP to experimental EPSP (dashed
line). Parameters of experimental EPSP were τr = 0.5 ms and τd = 20 ms. Parameters
of fit curve were τ = 1.33 ms, ∆ = 0.97 ms, k = 0.96, τm = 20 ms. b. Fit of distal
(300µm) EPSP to experimental EPSP. Parameters of experimental EPSP were τr = 2.5
ms, τd = 25 ms. Parameters of fit curve were τ = 4.62 ms, ∆ = 2.07 ms, k = 1.21, τm =
20 ms.

Magee and Cook (2000) fitted the EPSPs recorded at the soma by the ex-
pression (1− exp(−t/τr))

5 exp(−t/τd) where the rise time τr and decay time τd
at the soma depend on the distance of the synaptic input along the dendritic
tree. In order to incorporate their data into a point neuron model, we used the
Levenberg-Marquardt nonlinear regression algorithm (Mathworks ftp site) to
fit these curves to double-exponential alpha functions of the form

k

(
e− t−∆orth

τm − e− t−∆orth

τex

)
t > ∆orth

0 otherwise
(4)

where k is a constant. The decay time constant is identical to the membrane
time constant τm = 20 ms of the integrate-and-fire model; this is close to the
experimental values. Figure 1 shows the fits for proximal and distal dendritic
inputs. We assume that τex(x) varies linearly between its endpoint values of
τex(100) = 1.33 ms and τex(300) = 4.62 ms and that ∆orth(x) varies linearly
between its endpoint values of ∆orth(100) = 0.97 ms and ∆orth(300) = 2.07 ms.

3 Synaptic Plasticity

We modified the phenomenological mechanism for the observed plasticity used
by Song et al. (2000) so that there was a continuous transition between de-
pression and potentiation at the crossover point. The amount of potentiation or
depression depends on signals at the synapse. When a presynaptic spike arrives
at the synapse it increases the amount of a substance P ∗

i by A+/τ∗
+. In the ab-

sence of spikes, the substance P ∗ decays with a time constant τ∗
+ and catalyses

synthesis of a substance Pi, which in turn decays at a rate τ∗
+ = 20 ms:

τ∗
+

dP ∗
i

dt
= −P ∗

i and τ+
dPi

dt
= −Pi + P ∗

i . (5)
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Fig. 2. The effective temporal plasticity rule. tpre is the time of arrival of the presy-
naptic spike at the synapse, and tpost is the time of the backpropagating spike at the
synapse. Parameters: τ∗

+ = τ∗
− = 1 ms, A+ = 0.005, A− = 1.05A+.

When the postsynaptic neuron fires, an action potential starts to backpropa-
gate through the dendritic tree. This backpropagating action potential arrives
∆anti(x) = x/300 ms later at the synapse and releases an amount A−/τ∗

− of a
substance M∗

i which decays with a time constant τ∗
−. This substance synthesises

substance Mi, which decays at a rate τ− = 20 ms. The expression for ∆anti(x)
is based on the observation that the propagation speed of the peak of the back-
propagating action potential is constant up to about 300µm and that the delay
at this point is about 1 ms (Spruston et al., 1995).

The presynaptic spike also decreases the weight by an amount of Migmax
where gmax is the maximum weight. Similarly, when a backpropagating action
potential arrives at the synapse, the weight increases by Pigmax. The weight
is prevented from growing larger than gmax or smaller than zero. The effective
temporal plasticity rule is shown in Fig. 2.

In the simulations we set A+ = 0.1, A− = 1.05A+ and gmax = 0.06.

4 Results

We first ran the model with very small values of τ∗
+ and τ∗

− (0.001 ms) which
gave an approximation to the discontinuous case. All simulations lasted 5000 s.
After this time the weight distribution was as shown in the top panel of Fig. 3a.
This distribution is bimodal; synapses tend to be winners or losers. We can also
see that proximal synapses tend to “win” whereas distal ones tend to “lose”.

This result fits with the competitive nature of weight-independent temporal
plasticity with bounded weights (Song et al., 2000; van Rossum et al., 2000).
Because distal inputs are attenuated, they are less likely to help make the post-
synaptic neuron fire and therefore less likely to be potentiated. Temporal factors
may also disadvantage distal inputs. Firstly, distal inputs that do help to fire
the postsynaptic neuron have to fire earlier than contributing proximal inputs.
Secondly, the backpropagating action potential takes longer to reach the distal
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Fig. 3. a. The weight distribution for various values of τ∗
+ and τ∗

−. The abscissa of
each panel shows the presynaptic neuron number; lower numbers are more proximal
and higher numbers more distal. The ordinate shows the strength of the corresponding
synapse. From top to bottom the values of τ∗

+ and τ∗
− are 0.001 ms, 0.006 ms, 0.1 ms

and 0.15 ms. b. The postsynaptic firing rate as a function of τ∗
+ and τ∗

−.

synapses. Thus there is less of the substance Pi when the backpropagating action
potential arrives at distal synapses, and therefore less potentiation.

Could a smoother transition from depression to potentiation alter this be-
haviour? Bi and Poo’s (1998) data shows maximum potentiation and depression
peaks separated by ±5 ms. If the time of the potentiation peak matches the
interval between a contributing presynaptic spike and a backpropagating spike
arriving at the synapse, the synapse should be potentiated more.

Figure 3a shows the weight scatter plots for various times of the depression
and potentiation peaks. For small values of τ∗

+ the dependence of the weight
distribution on distance does not change much, though a shorter transition phase
seems to favour distal synapses. For τ∗

+ > 0.15 ms, all the weights lose, contrary
to our hypothesis that smoother curves should favour distal synapses.

The behaviour with higher values of τ∗
+ is presumably because the peaks of

the plasticity curve overlap with presynaptic spikes that are uncorrelated to the
postsynaptic spikes, and depression is stronger than potentiation. This idea is
confirmed by the dependence of firing rate on the width of the central section
(Fig. 3b) which shows that the firing rate of the neuron is around 6 Hz and 8
Hz for smaller values of τ∗

+ but almost zero for larger ones.

5 Discussion and Conclusions

In short, morphology does influence temporal plasticity — at least with the
neuron model, temporal plasticity rule and input firing statistics we used. In
this section we discuss these caveats.
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Our point neuron model with morphology modelled by location-dependent
delays and EPSP rise time constants could not include factors that could be
modelled using compartmental models, such as dendritic conductances, branch-
ing and dendritic width. Although this does limit the scope of the conclusions, we
believe that the simpler model gives a first-order understanding of the problem.

Different firing statistics, for example temporally-correlated inputs, affect
the weight distribution in pure point neuron models (Song et al., 2000; van
Rossum et al., 2000). It seems unlikely that they could affect our results, unless
the correlated inputs occured preferentially over the distal dendritic tree, and
were therefore more effective than proximal correlated inputs. Also, successful
synapses hit the same upper bound regardless of their location.

The weight-dependent rule studied by van Rossum et al. (2000) leads to a
unimodal weight distribution in which synapses cluster around the weight at
which depression becomes more potent than potentiation. Temporal properties
are much less important, so in our model we would not expect the synaptic
weights to depend on location. Preliminary simulations bear out this hypothesis.

A uniform weight distribution leads to distal inputs being less effective.
Magee and Cook (2000) have shown that distal synapses in CA1 pyramidal
neurons compensate for dendritic filtering by being stronger. Neither weight-
dependent nor weight-independent rules appear to lead to this weight distribu-
tion. A location-dependent plasticity rule might account for location-dependent
weights. Further work will investigate location-dependent plasticity rules derived
from synapse-local signals in compartmental models (Rao and Sejnowski, 2001).
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