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Abstract: Human brain oscillations fluctuate erratically in amplitude during rest and exhibit power-law
decay of temporal correlations. It has been suggested that this dynamics reflects self-organized activity
near a critical state. In this framework, oscillation bursts may be interpreted as neuronal avalanches
propagating in a network with a critical branching ratio. However, a direct comparison of the temporal
structure of ongoing oscillations with that of activity propagation in a model network with critical con-
nectivity has never been made. Here, we simulate branching processes and characterize the activity
propagation in terms of avalanche life-time distributions and temporal correlations. An equivalent ana-
lysis is introduced for characterizing ongoing oscillations in the alpha-frequency band recorded with
magnetoencephalography (MEG) during rest. We found that models with a branching ratio near the
critical value of one exhibited power-law scaling in life-time distributions with similar scaling expo-
nents as observed in the MEG data. The models reproduced qualitatively the power-law decay of tem-
poral correlations in the human data; however, the correlations in the model appeared on time scales
only up to the longest avalanche, whereas human data indicate persistence of correlations on time
scales corresponding to several burst events. Our results support the idea that neuronal networks gen-
erating ongoing alpha oscillations during rest operate near a critical state, but also suggest that factors
not included in the simple classical branching process are needed to account for the complex temporal
structure of ongoing oscillations during rest on time scales longer than the duration of individual oscil-
lation bursts. Hum Brain Mapp 29:770–777, 2008. VVC 2008 Wiley-Liss, Inc.
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INTRODUCTION

Neuroscientists are becoming increasingly interested in
the concept of criticality. The idea that ongoing or endoge-
nous activity in the brain has quantitative spatio-temporal
hallmarks of systems operating at the edge between order
and disorder is intriguing [Beggs, 2007; Buzsaki, 2006;
Chialvo, 2007; Linkenkaer-Hansen et al., 2001]. It could
provide a generic framework for understanding important
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aspects of neuronal population activity, such as its high
susceptibility to perturbations [Kinouchi and Copelli, 2006;
Linkenkaer-Hansen et al., 2004], optimal information trans-
mission [Beggs and Plenz, 2003] and computational abil-
ities [Bertschinger and Natschlager, 2004], the presence of
metastable states that could support neuronal representa-
tions [Beggs and Plenz, 2004; Haldeman and Beggs, 2005;
Hopfield, 1982], and robustness of the dynamic state
[Bornholdt and Röhl, 2003]. Heuristic arguments for why
neuronal networks may operate in a critical state have
been known for some years [Bak, 1997; Chialvo and Bak,
1999], but only in recent years has the relevance of critical-
ity for understanding the nature of endogenous brain ac-
tivity been supported by empirical [Beggs and Plenz, 2003,
2004; Linkenkaer-Hansen et al., 2001; Mazzoni et al., 2007],
and modeling evidence [Abbott and Rohrkemper, 2007;
Kinouchi and Copelli, 2006; Levina et al., 2007].
The term ‘‘critical’’ has its roots in statistical physics

where it refers to the volatile state of certain materials at
the critical temperature of a phase transition [Christensen
and Moloney, 2005]. In the seminal paper by Bak et al.,
[1987], the relevance of criticality was broadened consider-
ably. They showed that systems composed of a large num-
ber of elements with nonlinear interactions may self-organ-
ize into a state with the statistical hallmarks of critical
systems, i.e., spatial and temporal correlations of a power-
law form. The power-law form is unique, because it is
the only mathematical function that indicates that the
system has no typical or ‘‘characteristic’’ scale. A system
characterized by power-law statistics is, therefore, said to
be ‘‘scale-free.’’
Whereas the power-law is inherently linked to the statis-

tical behavior of a system poised at criticality, it offers little
more than a phenomenological description; it shows that
event sizes are broadly distributed and, thus, that the sys-
tem must have a rich dynamical behavior. The branching
ratio is another important index of criticality, which pro-
vides a better understanding of the mechanism underlying
the dynamics at criticality. The branching ratio (r) of a
neuronal network is defined as the average ratio of current
to past activity (Fig. 1A–C). Thus, if the branching ratio is
smaller than one (r < 1), activity dies out before it has
propagated far, whereas a ratio larger than one (r > 1)
leads to an explosion of activity. These networks are
termed sub- and super-critical, respectively. In the critical
state, the ratio is close to one (r 5 1) and the activation of
N neurons will, on average, lead to the activation of
another N neurons [Chialvo, 2006]. Thus, activity in a
critical network may be sustained considerably longer
than in a sub-critical network and does not suffer from the
run-away excitation of the super-critical network. To
increase our understanding of the putative link between
activity propagation in networks with a critical connectiv-
ity and the temporal fluctuations of resting-state oscilla-
tions, we simulated a variety of branching processes and
compared their dynamics with that of brain oscillations in
humans.

METHODS

Recordings and Experimental Conditions

Ongoing electrical brain activity in sessions of 20 min was
measured with magnetoencephalography (MEG) from 13
normal subjects (aged 20–30 years, two females). Five of the
subjects were measured 2–4 times giving a total of 20 data
sets; however, statistics are based only on one recording per
subject. Eleven data sets were recorded with a system con-
taining 122 planar gradiometers used in a previous study
[Linkenkaer-Hansen et al., 2001]; the other nine data sets
were recorded with 204 planar gradiometers and have been
used in [Linkenkaer-Hansen et al., 2004]. The studies were
approved by the Ethics Committee of the Department of Ra-
diology of the Helsinki University Central Hospital.
During the recording sessions, the subjects were seated in

a magnetically shielded room and instructed to relax and
sit still with eyes closed. The data were sampled at 900 Hz
and decimated off-line to 300 Hz with a passband of 0.1–
100 Hz (6th order Butterworth digital filters). The off-line
decimation was performed to speed up computations and
did not influence the amplitude of the 10 Hz oscillations
that are the signals of interest in this study. The four chan-
nels with the largest mean amplitudes in the parietal and
right sensorimotor regions were selected in each subject.

Computational Modeling of Branching Processes

The simulation of a branching process is based on prob-
abilistic activity propagation among units in a network
with a fixed probability distribution for each unit (Fig. 1A–
C, right column). The average number of units that each
active unit activates per time step is the branching ratio
(r). For example, if the probability of the units to activate
0, 1, or 2 other units in the next time step is 0.5, 0.0, and
0.5, respectively, then r 5 0 3 0.5 1 1 3 0.0 1 2 3 0.5 5
1. A unit is only active during one time step, and the
branches are not interacting. Each process begins with one
active unit and ends either when no units are active, or
when an avalanche-size of 10,000 activated units is
reached. This cut-off was introduced to prevent the super-
critical process to create unphysiologically large ava-
lanches. We modeled 10 branching processes containing
106 avalanches for each branching ratio in the MATLABTM

environment (The MathWorks, 7.3.0.267).

Data Analysis

The amplitude envelope in the alpha-frequency band
was extracted using bandpass filters at 8–13 Hz (finite
impulse response filters with a Hamming window and fil-
ter order 90) and the Hilbert transform (Fig. 2A,B).

Temporal Correlation Analysis

The power spectral density (PSD) was determined by
means of the Welch technique with the Hanning window;
it reveals the contribution of different frequencies to the
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total power of the signal. White-noise signals contain equal
power at all frequencies and are uncorrelated, whereas sig-
nals with long-range power-law correlations have log–log
linear power spectra with a nonzero power-law exponent
b (1/fb-type signal). Periodic signals have peaks in the

spectrum at frequencies that are inverses of these periods.
The power spectra were logarithmically binned with 10
bins per decade.
Whereas PSD analysis is particularly suited for identi-

fying the presence of characteristic scales, the detrended

Figure 1.

The branching process: model, time series, life-time probability

distributions and power spectra. A branching process may be

characterized by its branching ratio (r), which is the average

number of activations per unit per time step. Branching pro-

cesses come in three main classes: super-critical (r > 1, A), crit-

ical (r 5 1, B); and sub-critical (r < 1, C). The branching ratio

may be varied by changing the probability distribution of number

of connections made by the neurons, as shown to the right of

the corresponding time series in A–C. (D) Probability distribu-

tion of avalanche durations or ‘‘life-times’’. The probability distri-

bution of avalanche ‘‘life-times’’ reveal many long-lasting ava-

lanches for the super-critical, but only few long-lasting avalanches

for the sub-critical, and no characteristic time scale for the criti-

cal process. (E) Double logarithmic power spectra. By compari-

son with the power-spectrum analysis, we see that all three

branching processes give rise to temporal correlations (1/f b

type, slopes larger than zero for high frequencies) on time scales

up to the longest-lasting avalanche events (vertical lines). Thus,

sub-critical processes (red diamond, r 5 0.9) have shorter corre-

lations than critical (blue circle, r 5 1.0), whereas the super-criti-

cal (green squares, r 5 1.1) branching process has a characteris-

tic scale due to the cut-off at 10.000 units, corresponding to the

finite size of a neuronal network or the instrument. Power spec-

tra are based on a 4 3 105 time-step signals and the probability

distributions are based on 2 3 106 avalanches. Fitting intervals

are indicated with arrows. (A–C, left column) adapted with per-

mission from Nature Publishing Group (Chialvo, 2006).
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fluctuation analysis (DFA) [Peng et al., 1994] provides
greater accuracy in estimating the decay of temporal
(auto-)correlations when the amount of data available is
limited [Gao et al., 2006] and, therefore, has been the pre-

ferred algorithm in several quantitative studies on long-

range temporal correlations (LRTC) in ongoing oscilla-

tions [Linkenkaer-Hansen et al., 2007]. The main steps

from the broadband MEG signal to the quantification of

LRTC using DFA have been explained in detail else-

where [Linkenkaer-Hansen et al., 2001, 2004; Nikulin and

Brismar, 2005]. In brief, the DFA measures the scaling of

the root-mean-square fluctuation of the integrated and

linearly detrended signals, F(t), as a function of time

window size, t. For signals that are uncorrelated or have

persistent power-law correlations, the average fluctuation

hF(t)i is of the form hF(t)i 5 ta, where a is the DFA scal-

ing exponent. If 0.5 < a � 1.0, this indicates power-law

scaling behavior and the presence of temporal correla-

Figure 2.

On short to intermediate time scales, a-oscillation bursts have

similar temporal structure to avalanches in a critical branching

process. The MEG signals (A) were band-pass filtered from 8–13

Hz (thin line, B) and the amplitude envelope of the oscillations

(thick line, B) extracted with the Hilbert transform. The signal

exhibits an oscillatory burst structure on longer time scales (C).

To quantify differences in oscillation-burst dynamics on short to

intermediate time scales (<1 s), we introduced a threshold at

the median amplitude (horizontal dashed line, B) and defined the

start and end of an oscillation burst or ‘‘avalanche’’ as the time

points of crossing this threshold. Signal from a right sensorimo-

tor channel. (D) Grand-average probability distribution function

(PDF) of oscillation-burst life-times in double logarithmic coordi-

nates exhibit a slow power-law decay of oscillation life-times,

unlike the empty-room recording (black dots), which has fast-

decaying probability of long-lasting events. The life-time expo-

nents (the slopes of the fitted lines in the PDF) were s 5 1.29

6 0.06 (red plusses) and s 5 1.99 6 0.06 (blue stars) in the pari-

etal and right-sensorimotor areas, respectively. (E) Grand-aver-

age power spectral density in double logarithmic coordinates

(PSD) showing 1=f b spectra with exponents b 5 0.56 6 0.05

(red plusses) and b 5 0.47 6 0.07 (blue stars) in the parietal

and right-sensorimotor areas, respectively. These non-zero

exponents indicate 1=f b-type of temporal correlations with a

slow power-law decay of correlations on time scales > ~1 s,

unlike the empty-room recording, which is characterized by a

flat spectrum on these time scales (black dots). Note that the

non-zero slopes at frequencies above ~1 Hz are caused by the

temporal integration of the bandpass filters; however, this filter

effect does not lead to long-lasting oscillations, cf. (D). (F) Dou-

ble logarithmic plots of the DFA fluctuation measure, F(t), as a

function of window size, t, display power-law scaling in the time

window range of 1–20 s for the parietal area a 5 0.83 6 0.01

(red plusses), the right-sensorimotor area a 5 0.78 6 0.02 (blue

stars), and for an empty-room recording (black dots). Fitting

intervals are indicated with arrows. (G) Scatter plots of life-time

(s) and DFA (a) exponents for all subjects indicate a significant

correlation between temporal correlations on short (s) and long

(a) time scales in the right sensorimotor (blue) region (r 5
20.77, p < 0.002), but only a trend in the parietal region (r 5
20.45, p 5 0.12) (red). Open circles are repeated measurements

and are not included in the correlation fits. (H) Oscillation-

bursts may be defined with respect to an amplitude range of at

least 620% around the median amplitude without significantly

affecting the life-time power-law exponent, s. (I) Life-time expo-

nents (mean 6 SEM) obtained using different thresholds. Hori-

zontal bars indicate the range of thresholds associated with an

insignificant influence on s (ANOVA, p < 0.05).
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tions, whereas a 5 0.5 indicates the case of an uncorre-

lated signal.

Oscillation ‘‘Avalanche’’ Life-Time Analysis

For each channel and subject, we computed the median
amplitude of oscillations as the median amplitude enve-
lope after bandpass filtering and Hilbert transform and
used this as the threshold for defining the start and end
points of an oscillation burst (Fig. 2B). The duration, or
‘‘life-time,’’ of an oscillation is the time that the amplitude
envelope remains above this median level (Fig. 2B). Proba-
bility distributions of oscillation life-times were computed
using equidistant binning on a logarithmic axis with 10
bins per decade. By visual inspection, it was found that all
subjects had probability distributions of life-times that
decayed as a power-law in the range of 153–893 ms (Fig.
2D). The life-time power-law exponent, s, is the slope of
the straight line in double-logarithmic coordinates and was
computed using least-square fitting in this range in all
channels and subjects.

Reference Data

Broadband environmental noise is often temporally cor-
related. To verify that intrinsic sensor noise or environ-
mental disturbances did not cause any of the effects
reported here, a 20-min recording was performed without
a subject in the MEG device. These reference data were
subjected to identical analyses as the rest of the data.

Statistical Analysis

We used two-tailed t-test that assumed equal variance
with significance level P < 0.05. The exponents for indivi-
dual subjects were based on the average across the four
channels from each anatomical location. Pearson’s coeffi-
cient of correlation was used to test for linear correlations
among the various measures derived from the data. The
numerical results in the text are reported as mean 6 stand-
ard-error-of-mean (SEM) based on the average values
across subjects (n 5 13). Thus, only one recording was
included for each subject in the statistics. One-way
ANOVA was used to investigate the threshold dependence
of the life-time exponent.

RESULTS

The Temporal Structure of Branching Processes

A branching process is characterized by its branching
ratio (r), which is the average number of activations
per unit per time step. We generated branching processes
corresponding to the three main classes: super-critical (r > 1),
critical (r 5 1), and sub-critical (r < 1) (Fig. 1; for details,
see ‘‘Computational modeling of branching processes’’ in
Methods). The probability distributions for each neuron to

make a functional connection with another neuron (i.e., to
activate another neuron) are shown in the rightmost col-
umn of Figure 1A–C.
The conspicuous differences in dynamics are captured

by the probability distribution function of avalanche life-
times (Fig. 1D). The super-critical process has a character-
istic time scale related to the cut-off of avalanches reaching
10,000 activations, the sub-critical process exhibits an expo-
nential decay of long-lasting avalanches, whereas the criti-
cal branching process (Fig. 1B,D, blue traces and circles,
respectively) is characterized by a power-law decay with
an exponent s 5 1.54 6 0.00 for short life times (n 5 10).
However, if the probability of zero connections in a critical
branching process decreases towards 0.05, the life-time
exponent decreases towards s 5 1.03 6 0.00 (data not
shown). Fitting power laws to the distributions of sub- or
super-critical processes in the approximately log–log linear
interval used for fitting the critical distribution led to sig-
nificantly larger exponents than the critical process. Sub-
critical: s 5 2.00 6 0.00, P < 0.005 (Fig. 1D, red diamonds);
and super-critical: s 5 1.93 6 0.00, P < 0.005 (Fig. 1D,
green squares).
As expected for a causal sequence of events, PSD analy-

sis indicated temporal correlations at high frequencies (cor-
responding to 1–40 time steps) for all the avalanche pro-
cesses (critical: b 5 1.80 6 0.00; sub-critical: b 5 1.50 6 0.00;
and super-critical: b 5 1.71 6 0.00, 2 3 105 time steps) (Fig.
1E). However, the shorter avalanches in the sub-critical
process (Fig. 1E, red diamonds) is reflected in the transition
to uncorrelated fluctuations at shorter time scales (i.e.,
higher frequencies) than for critical processes (Fig. 1E, blue
circles), and super-critical processes (Fig. 1E, green squares)
have a characteristic scale (cf. the peak in the PSD) corre-
sponding to the cut-off followed by uncorrelated fluctua-
tions on longer time scales (lower frequencies). We con-
clude that power-law scaling both in the life-time distribu-
tion and in the PSD is restricted to the largest individual
avalanche event and, thus, cannot explain temporal correla-
tions on time scales corresponding to several events.

Critical-Like Power-Law Distribution of

a-Oscillation Bursts

To examine whether the temporal structure of oscillation
bursts resembles the avalanche structure of a critical
branching process and whether LRTC can be explained by
very long-lasting oscillation bursts, we introduced an ‘‘ava-
lanche analysis’’ of oscillation bursts (Fig. 2A–C). Power-
law scaling of life-time probability distributions was robust
across subjects, albeit life-time exponents were significantly
larger over sensorimotor cortex s 5 1.99 6 0.06 (Fig. 2D,
blue stars) than parietal region s 5 1.29 6 0.06 (Fig. 2D,
red plusses; P < 0.005, n 5 13). The life-time exponents
were not very sensitive to the chosen threshold (ANOVA,
P < 0.05; Fig. 2H,I). Further, we did not find significant
correlations between the median amplitude and the life-
time exponents (Pearson’s correlation, P > 0.05, data not
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shown). The longest oscillation bursts, however, reached
life-times one or two orders of magnitude less than the
time scales with LRTC according to PSD (Fig. 2E). The
PSD had a 1/fb-type signal with power-law exponents b 5
0.47 6 0.07 and b 5 0.56 6 0.05, for the right sensorimotor
and parietal regions, respectively. Together, the life-time
distributions and PSD suggest that amplitude dynamics on
short to intermediate time scales (< �1 s) resemble the dy-
namics of a critical process, but that a simple critical
branching process cannot account for the rich temporal
structure of ongoing alpha oscillations on long(er) time
scales (1–20 s).
It has been shown that DFA provides a more accurate

estimate of LRTC than PSD, which is particularly impor-
tant at long time scales, because of the limited amount of
empirical data [Linkenkaer-Hansen et al., 2007]. To test
whether the life-time exponents that characterize the
amplitude dynamics on short to intermediate time scales
(< �1 s) are related to the temporal structure on long time
scales corresponding to tens of oscillation bursts, we corre-
lated the life-time (s) and DFA (a) exponents (Fig. 2G).
The results indicated a significant correlation in sensorimo-
tor (r 5 20.77, P < 0.002), but only a trend in the parietal
(r 5 20.45, P 5 0.12) regions, suggesting that there may
be a relationship despite the difference in time scales.
In summary, a critical branching process has a power-

law life-time probability distribution with a power-law
exponent around s 5 1.5, which is close to the exponents
found in the MEG data (s 5 1.3–2.0).

DISCUSSION

Ongoing or ‘‘endogenous’’ neuronal oscillations in the
human brain exhibit erratic amplitude fluctuations that are
governed by a slow power-law decay of temporal correla-
tion up to several tens of seconds [Linkenkaer-Hansen
et al., 2001, 2007; Monto et al., 2007; Nikulin and Brismar,
2005]. The mechanisms giving rise to this statistical hall-
mark are poorly understood, but it has been suggested to
reflect self-organized activity in critical networks [Linken-
kaer-Hansen et al., 2001]. In vitro studies in cortical tissue
have indicated that population activity may propagate as
‘‘neuronal avalanches’’ and that the branching ratio is close
to the critical value of 1 [Beggs and Plenz, 2003; Plenz and
Thiagarajan, 2007]. Here, we simulated branching proc-
esses and introduced a novel method for characterizing
the amplitude fluctuations of ongoing oscillations to com-
pare their temporal dynamics.

From Bursts of Activity to Temporal Correlations

The models revealed a dramatic influence of the branch-
ing ratio on the pattern of activity over time, as reflected in
the PSD and the probability distribution function of ava-
lanche life-times, as well as upon visual inspection (see Fig.
1). Analytically, the life-time exponent for a critical branch-

ing process has been derived to be s 5 2 [Harris, 2002];
however, this result is only valid for long avalanches. Our
simulations showed that life-time exponents on short time
scales are dependent on the probability of making zero
connections and could range from about 1.0 to 1.6 for a crit-
ical process. Sub- and super-critical processes were charac-
terized by exponentially decaying life-time probabilities,
albeit that the finite-size effect (cut-off) led to a character-
istic scale for the super-critical process, as it does in neuro-
nal avalanches in vitro when inhibition is pharmacologi-
cally reduced [Beggs and Plenz, 2003].
To compare the avalanche life-time statistics of branch-

ing processes directly to human oscillations, we introduced
a novel analysis based on the quantification of the life-time
of individual oscillations bursts (see Fig. 2). For experi-
mental data, it is not possible to unambiguously determine
the exact beginning and end of an oscillation burst. We
chose an amplitude threshold equal to the median ampli-
tude; however, the threshold could be changed by more
than 620% without significantly affecting the life-time
exponents from the distribution of oscillation bursts, so the
exact choice of threshold is less important. We found that
resting-state oscillations in the alpha-frequency band (8–13
Hz) have similar scale-free temporal correlations to those
of critical branching processes on short to intermediate
time scales with life-time exponents in the range of 1.3–2.0,
which is comparable with those of critical branching pro-
cesses, albeit that the upper range of the interval approxi-
mates the subcritical process. The results suggest that the
individual alpha-burst structure may be explained in terms
of a propagation of oscillatory activity through cortical net-
works with a critical connectivity.
Importantly, the PSD analysis revealed persistence of

temporal correlations in the critical branching process
model only up to time scales corresponding to the longest
avalanche (Fig. 1D,E). This reflects that the temporal orga-
nization of burst events is random and not correlated on
time scales longer than the duration of the longest burst,
which is also true for most models of self-organized crit-
icality [Davidsen and Paczuski, 2002]. Thus, if LRTC in
neuronal oscillations were to reflect propagation of oscilla-
tory activity in ‘‘simple probabilistic critical networks’’ as
simulated here, oscillations would have to last for tens of
seconds, which is not the generally accepted view [Lopes
da Silva et al., 1997]. Indeed, we observed that correlations
in human oscillations persist onto much longer time scales
(Fig. 2E,F) than the duration of oscillation bursts (Fig. 2D).
Thus, it appears that multiple mechanisms are required for
explaining the complex temporal structure of amplitude
fluctuations in ongoing alpha oscillations on time scales of
tens of milliseconds to tens of seconds.
We propose that the critical connectivity of cortical net-

works strongly influence burst duration and, thus, the life-
time exponents. LRTC, on the other hand, may arise from
sub-cortical modulation [Steriade et al., 1990] or other
mechanisms affecting cortical excitability [Vanhatalo et al.,
2004] that operate on long time scales and give rise to frac-
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tal clustering of oscillation bursts on longer time scales
than the duration of individual bursts. Another possibility
for activity on short time scales to influence long-time
scale dynamics is activity-dependent plasticity [Marder
and Goaillard, 2006; van Ooyen, 1994; Zhang and Linden,
2003], which is important for the emergence of the self-
organized critical state in model neuronal networks
[Abbott and Rohrkemper, 2007; de Arcangelis et al., 2006;
Levina et al., 2007], but it remains unknown whether this
could give rise to correlations on longer time scales than
the longest individual events.
Functional magnetic resonance imageing (fMRI) has sug-

gested that also the multi-scale, or fractal, temporal struc-
ture of hemodynamic changes during rest is information
rich [Bullmore et al., 2004; Maxim et al., 2005]. With the
rapid advances in EEG-fMRI [Gonçalves et al., 2006; Man-
tini et al., 2007], it should soon be possible to address to
what extent the fractal structure of ongoing oscillations
can be related to the corresponding structure of fMRI data.

Outlook

The temporal structure of ongoing oscillations has
attracted considerable attention in recent years, because it
is rich in information and clearly not a form of filtered
noise [Leopold et al., 2003; Linkenkaer-Hansen et al., 2001;
Nikulin and Brismar, 2005; Stead et al., 2005]. The present
model proved useful for determining the life-time expo-
nent of a critical branching process on short-to-intermedi-
ate time scales and provided a plausible explanation for
the link between functional brain connectivity and alpha-
oscillation burst variability. Future studies should address
the possible contribution of mechanisms influencing this
connectivity on the experimentally observed temporal cor-
relations. We propose that the present method for extract-
ing the life-time exponent of ongoing oscillations may
prove useful as a neuroimaging biomarker in clinical stud-
ies and for bridging the gap between mechanisms and
functions of amplitude fluctuations on short-to-intermedi-
ate and long time scales.
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