Chapter 2

Activity-Dependent
Outgrowth of Neurons and
Overshoot Phenomena in
Developing Neural Networks

A. van Ooyen & J. van Pelt, J. Theor. Biol. 167 (1994) 27-43.

During the development of the nervous system, all kinds of structural el-
ements such as neurons, neuritic extensions and synapses are initially over-
produced (so-called overshoot phenomena).

Neurite outgrowth has been found to be regulated by electrical activity
of the neuron. High levels of activity, resulting in high intracellular calcium
concentrations, cause neurites to retract whereas low levels of activity, and
consequently low calcium concentrations, allow further outgrowth. Using
simulation models, we demonstrate that such activity-dependent outgrowth
in combination with a neuronal response function with some form of firing
threshold - which gives rise to a hysteresis effect - is sufficient to cause an
overshoot with respect to connectivity or synapse numbers. As a consequence
of hysteresis, the network connectivity at which a phase transition occurs
from the quiescent to the activated state is higher than that for maintaining
activity at a level where connectivity remains constant. A developing net-
work will therefore first increase its connectivity until it becomes activated,
upon which the neurites begin to retract. Connectivity then decreases until
the equilibrium value is reached, thus causing the growth curve to exhibit
overshoot.

31




32 Chapter 2

2.1 Introduction

Neurons become assembled into functional neural networks during develop-
ment. Among the many factors influencing the ultimate structure and func-
tion of the nervous system, electrical activity plays a pivotal role. Many
mechanisms that determine neuronal connectivity such as neurite outgrowth,
growth cone behaviour, naturally occurring cell death, trophic factors, synap-
togenesis, elimination of synapses, and changes in synaptic strength have been
found to be modulated by electrical activity (for review see Chapter 1 and
Fields & Nelson, 1992).

Neurite outgrowth

Electrical activity of the neuron reversibly arrests neurite outgrowth (or pro-
duces retraction) and changes growth cone morphology (Cohan & Kater,
1986; Fields et al., 1990a; Schilling ef al., 1991). Similarly, depolarizing me-
dia and neurotransmitters affect neurite outgrowth of many cell types (e.g.,
Sussdorf & Campenot, 1986; Lankdorf et al, 1987; McCobb et al., 1988;
Lipton & Kater, 1989; Mattson & Kater, 1989; Todd, 1992), with excita-
tory neurotransmitters inhibiting outgrowth and inhibitory ones stimulating
outgrowth.

Electrical activity and neurotransmitters probably regulate neurite out-
growth by affecting the calcium concentration in growth cones (Cohan et
al., 1987; Fields et al, 1990b; Kater & Mills, 1991). This has led to the
calcium theory of neurite outgrowth (e.g., Kater et al., 1988; Kater et al.,
1990; Kater & Guthrie, 1990), which posits that low intracellular calcium
concentrations ([Ca?t);,) stimulate outgrowth, higher concentrations cause
a cessation of outgrowth, and still higher concentrations lead to regression of
neurites. Thus, all factors that change [Ca?*];, (such as action potentials or
other forms of depolarization and neurotransmitter actions) are potentially
able to affect neurite outgrowth. Alterations in [Ca?t];, have also been im-
plicated in the development of dendritic morphology (Kater et al, 1990).
Because of the morphological changes that accompany changes in [Ca?*];,,
and the large number of signals that influence it, mechanisms regulating
[Ca%t],, have been proposed to represent a major means by which entire
patterns of neuronal circuitry can be specified (Lipton & Kater, 1989).

Applied electric fields, too, influence nerve growth, with respect both to
branching (McCaig, 1990a) and to the rate of elongation (McCaig, 1990b).

Network formation and overshoot

Asg a result of these activity-dependent processes, a mutual influence exists
between the formation of synaptic connectivity and neuronal electrical ac-
tivity. That is, a feedback loop exists between changes in network structure
and changes in network activity (Von der Malsburg & Singer, 1988). This
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feedback loop must be expected to have major implications for the stages a
network goes through during its development.

A general feature of nervous system development, in vivo as well as in
vitro, is that virtually all structural elements show an initial overproduction,
followed by an elimination during further development. These so-called over-
shoot phenomena occur, for example, with respect to neuron numbers (e-g.,
Finlay & Slattery, 1983; Heuman & Leuba, 1983; Cowan et al., 1984; for re-
views see Oppenheim, 1991; Ferrer et al., 1992), connections (e.g., Kato et al.,
1985; Stanfield & O’Leary, 1985; Price & Blakemore, 1985), total dendritic
length (Uylings et al., 1990), number of dendrites (Miller, 1988), number of
axons (Schreyer & Jones, 1988; Gorgels et al., 1989), number of synapses
(e.g., Purves & Lichtman, 1980; Huttenlocher et al., 1982; Warren & Bedi,
1984; O’Kusky, 1985; in vitro: Van Huizen et al. 1985, 1987a), receptors
(e.g., Insel et al., 1990; McDonald et al., 1990; for review see McDonald &
Johnston, 1990), and expression of neurotransmitters (e.g., Wahle & Meyer,
1987; Parnavelas et al., 1988).

In most neural network models, the activity patterns of the system are
studied in response to external input, given a particular collection of cells and
network structure. In developing networks, however, the number of cells and
network structure are variable and under control of the network activity itself
(via the above mentioned activity-dependent processes). Furthermore, in the
initial stages of development activity patterns that are not evoked by external
input play a large role (also see Corner, 1990). Insight into the implications
of activity-dependent processes and endogenous activity will therefore be
indispensable for understanding the ontogenetic stages of the nervous system.
In this article, we will address the implications of activity-dependent neurite
outgrowth. It will be shown that this process can account for the occurrence
of a transient overproduction of connections or synapse numbers.

No simulation models for explaining overshoot are known to us. In Fein-
berg et al. (1990) only a descriptive statistical model is presented for some
overshoot phenomena in vivo.

2.2 The Model

The model is not meant to mimic a particular nervous system, but is rather
used as a tool to gain insight into the role of activity-dependent outgrowth
for network formation in general. We use a distributed model in which ini-
tially disconnected neurons organize themselves into a synaptically connected
network by neurite outgrowth and synaptogenesis, under influence of endoge-
nous activity (there is no external input). Growing neurons are modelled as
expanding neuritic fields, and the outgrowth of each neuron depends upon its
own level of electrical activity. Neurons become connected when their neu-
ritic fields overlap. All connections are taken to be excitatory, considering
that the predominant form of synaptic activity during early stages of devel-




34 Chapter 2

opment appears to be excitatory (Jackson et al., 1982; O'Brien & Fischbach,
1986; Habets et al., 1987; Cherubini et al., 1991; Corner & Ramakers, 1992).
The model is inspired in part by tissue cultures of dissociated cerebral cor-
tex cells (Van Huizen, 1986; Van Huizen et al, 1985, 1987a; Ramakers et
al., 1991). As in the model, cells in such cultures become organized into a
network without the influence of external or sensory input.

2.2.1 Neuron Model

The shunting model (Grossberg, 1988; Carpenter, 1989), which mirrors the
underlying physiology of simple nerve cell dynamics (Hodgkin & Huxley,
1952), is used to describe neuronal activity. In this model, excitatory in-
puts drive the membrane potential towards a finite maximum (or saturation
potential, e.g., the Nat equilibrium potential), while inhibitory inputs (if
any) drive the membrane potential towards a finite minimum (e.g., the K+
equilibrium potential).
For a purely excitatory network, the shunting model becomes

N
+(1- Xi)ZWijF(X,-), (2.1)
j=1

dX; __&
dt ~ T

where X; is the (time averaged) membrane potential of neuron i, F(Xj;) is
the firing rate of neuron j, Wj; is the coupling strength between neuron i
and j (W;; > 0; Wi, is defined in Section 2.2.2), and N is the total numbers
of neurons. Thus, Eq. (2.1) takes the output of a neuron to be a mean firing
rate. The effect of neuron j on X; is mediated by trains of action potentials,
and hence is proportional to the product of F(X;) and W;;. The sum of all

excitatory inputs, Z?’;l Wi; F(X;), drives X; towards the excitatory satura-

tion potential, which is set equal to 1. In the absence of inputs, X; decays,
with a rate determined by 1/7, to the resting potential, which is set equal
to 0. Thus, X; is scaled between 0 and 1. The initial values of X; are set
below the saturation potential (i.e., X; < 1). The firing rate function F is a
sigmoidal function of the membrane potential:

]

FX) = o=

(2.2)
where F(X) is the firing rate [with its maximum set to 1, see Fig. 2.7(a)], «
determines the steepness of the function and # represents the firing thresh-
old. The low firing rate when X is sub-threshold may be considered as rep-
resenting spontaneous activity, arising from threshold fluctuations (Verveen,
1960), membrane potential fluctuations, synaptic noise (Korn & Faber, 1987),
and /or random external input. Equation (2.1) and similar ones have been
widely used in the field of neural network modelling (Grossberg, 1988; and
references therein)
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2.2.2  Outgrowth and Connectivity

Neurons are randomly placed on a two-dimensional surface. In order to
model outgrowth and formation of connections, each neuron is given a circular
‘neuritic field’, the radius of which is variable. When two such neuritic fields
overlap, both neurons, say 4 and j, become connected to each other with a
strength proportional to the area of overlap:

mj = A,"jc, (23)

where A;; = Aj; is the amount of overlap (Ai; = 0) and c is a constant
of proportionality; A;; may be regarded as representing the total number of
synapses formed between neuron 4 and j, while ¢ could represent the synaptic
strength. In this abstraction, no distinction has been made between axons
and dendrites. If one were to do so, this would lead to a connectivity matrix
W that needs no longer be symmetric. In most of the simulations we used

Eq. (2.3). Just in order to test whether asymmetry would affect the results,
we also used

Wi = A0y, (2.4)

where A;; is as before and C;; is uniformly distributed with mean ¢, so W
becomes asymmetric.

In the model, the outgrowth of each individual neuron depends upon
its own level of electrical activity. Since the effect of activity on outgrowth
is mediated by [Ca®*];, (Cohan et al, 1987; Fields et al., 1990b; Kater &
Mills, 1991), and one of the consequences of the firing of action potentials is
the influx of calcium ions (e.g., Hockberger et al., 1989), leading to elevated
[Ca®*);,, we take the outgrowth to be dependent upon the firing rate:

dR;
dt

= pG(F(Xy), (2.5)

where R; is the radius of the circular neuritic field of neuron #, and p deter-
mines the rate of outgrowth. The outgrowth function G is defined as

2

GIF(X)) =1~ o —Fms’

(2.6)
where e is the value of F'(X;) for which G = 0 and 3 determines the steepness
of the function. The function G remains in the bounded range < —1,1 >.
Depending on the firing rate, a neuritic field will grow out (G > 0 when
F(X;) < ¢), retract (G < 0 when F(X;) > €) or remain constant (G = 0
when F(X;) =€) (see Fig. 2.1).

Equation (2.6) is simply a phenomenological description of the theory
of Kater et al. (Kater et al, 1988; Kater et al, 1990; Kater & Guthrie,
1990) that the electrical activity of a neuron affects (via calcium influx) its
outgrowth. High activity or [Ca®t];, produces retraction, as reported in
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F(X)

Fig. 2.1 Outgrowth function G [Eq. (2.6)].

Cohan & Kater (1986), Fields et al. (1990a) and Schilling et al. (1991),
and low activity or [Ca?t);, allows outgrowth. This description is also in
agreement with observations that suppression of activity favours neurite out-
growth (Van Huizen & Romijn, 1987; Schilling et al., 1991). An admittedly
unrealistic property of Eq. (2.6) is that if F(X;) < ¢, a neuron could grow
out indefinitely. We preferred, however, not to put explicit bounds on the
neuritic field size, because it appeared that the network itself is capable of
regulating the size of its neurons.

Essential in the formulation of the outgrowth model is that connectivity
can change during development. Using growing neuritic fields and taking the
connection strength proportional to the area of overlap is just one way of
achieving this. In addition, we have studied several other ways of changing
connectivity (see Section 2.4).

To summarize, each neuron is described by differential equations for both
the membrane potential X and the radius of the neuritic field R. In total,
the model thus consists of 2N differential equations, where N is the total
the number of neurons. The connectivity matrix W(N x N) is variable
and is determined by calculating the degree of overlap of the neuritic fields.
The model is studied both analytically and by means of numerical solution,
employing the variable time step Runge-Kutta integrator provided by Press
et al. (1988).

2.2.3 Parameters

The membrane time constant 7 was set at 8 ms, which is well within the range
of values reported for cortical cells (Connors et al., 1982) and hippocampal
cells (Lacaille et al., 1987). However, the results will appear not to depend
upon the actual choice for 7. The outgrowth of neurons is on a time scale of
days or weeks (Van Huizen et al., 1985, 1987a; Van Huizen, 1986; Ramakers
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et al., 1991; Schilling et al., 1991), so that connectivity can be regarded as
quasi-stationary on the tlme scale of membrane potential dynamics (i.e., p
much smaller than 1/7). To avoid unnecessarily slowing down the simula-
tions, p was chosen as large as possible so as to maintain the quasi-stationary
approximation. In most simulations, we used p = 2.5-10~%. As nominal
values for the other parameters, we choose # = 0.5, a = 0.10, 8 = 0.10 and
€ = 0.60. The effect of other values was studied in order to test the robustness
of the results (Section 2.4).

2.3 Results

2.3.1 Global Model Behaviour

The behaviour of the model can in part be predicted directly from Eq. (2.1).
The excitatory network defined by Eq. (2.1) (W;; > 0; W;; need not equal
Wj;) has, for biologically realistic initial conditions (X; < 1), convergent
activation dynamics (Hirsch, 1989): every trajectory converges to some equi-

librium point. The equilibrium states for a given W are given by the solutions
of

Xi al
0= _Tt + (1 &= X,;) ZWijF(Xj) Vi. (27)

j=1

If the variations in X; are small (i.e., relative to X ), we find for the average
membrane potential of the network (see Appendix):

0~ —§ + (1 - X)WF(X), (2.8)

where W = (1/N) El 1,j=1 Wij. By means of numerical simulation, it was
confirmed that Eq. (2. 8) captures the essentials for qualitatively describing
the global behaviour of the model in terms of W and X (see Section 2.3.2).
Based on this approximation, W can be written as a function of X:

= X/T _
W_(Tm 0<X<1, (2.9)

which gives the steady state (dX/dt = 0) dependence on W (Fig. 2.2). The
steady states lying on the branch ABC (quiescent states: X is low) and
on DEF (activated states: X is high) are stable, whereas those on GD are
unstable. Thus for W, < W < W, (W, and W are the critical points), there
exist two stable steady states (also see Murray, 1989). For slowly increasing
w (starting at A) the path followed by X is different from that for slowly
decreasing W (starting at F): ABCEF and FEDBA, respectively. The
presence of this hysteresis loop underlies the emergence of overshoot.
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Fig. 2.2 Hysteresis. Steady state (dX/dt = 0) dependence on W (W =
(1/N) Eild:l Wij), according to Eq. (2.9). Further see Section 2.3.1 of text.

The size of the neuritic fields, and therefore W, is governed by the sys-
tem itself, being under control of neuronal activity. A neuritic field remains
constant for G =0, i.e., if X; = F~1(¢) [Eq. (2.6)], where F~! is the inverse
function of F. If this holds for all cells, W remains constant. Then, since
all cells have identical €, also X = F~!(¢). Thus, the equilibrium point of
the system is the intersection point of the line X = F~!(¢) with the curve
of Fig. 2.2. The rate of outgrowth is so low relative to the dynamics of the
membrane potential that, for changing W, X follows the curve. Starting with
initially disconnected cells (W = 0), the model can display four qualitatively
different kinds of global behaviour (see Fig. 2.3), depending on the position
of the equilibrium point (which is stable on the branches DE, EF and ABC,
and unstable on C'D).

DE: overshoot

Because the activity in the network is initially low, dR;/dt is positive and W
increases, whereby X follows the branch ABC until it reaches Wa, at which
point X jumps to the upper branch, thus exhibiting a phase transition from
quiescent to activated state. The activity in the network is then however so
high [i.e., above F~!(e)], that the neuritic fields begin to retract (dR;/dt < 0)
and W to decrease, whereby X moves along the upper branch from E to the
intersection point. Thus, in order to arrive at an equilibrium point on the
branch DE, a developing network has to go through a phase in which W is
higher than in the final situation, thus exhibiting a transient overshoot in W.
number of synapses or connections in the network.

In Section 2.4, it will be shown that the existence of a hysteresis loop
hinges upon the firing rate function F' having a firing threshold and low
but non-zero values for sub-threshold membrane potentials. The size of the
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hysteresis loop depends on a (Fig. 2.7). A smaller o results in a larger
hysteresis loop and a larger overshoot in W. Since for small X the increase
of X, starting with W = 0 and X = 0, is proportional to WPF(X) [see
Eq. (2.1)], and the increase in F(X) is relatively slow due to F being concave
for X < #, X increases mainly as the result of increasing . Thus, the lower
the value of F(X) for sub-threshold values of X (ie., @ small), the higher W
should become to activate the network (if F(X) = 0 for low X , one would
need infinitely high W), resulting in a larger hysteresis loop. Once F(X) is
high, W may be lower to keep WF(X) high. In other words, a higher W is
needed to trigger activity in a quiescent network than to sustain it once the
network has been activated.

ABC and EF: no overshoot

If the neuritic fields start retracting already at a very low level of activity, or
only when the level of activity is very high, no overshoot occurs. In the first
case, the equilibrium point lies on ABC, and the neurons stop growing even
before W can reach the critical point Wa. In the second case, the equilibrium

- point lies on EF, and W will remain increasing after X has jumped to the

upper branch, which is followed until the intersection point is reached.

CD: oscillations

An intersection point on this branch is unstable and results in regular os-
cillations that follow the path ABCEDBCEDBC.... The period of these
oscillations is determined by the value of p.

2.3.2 Simulation Results

Approzimation

The validity of approximating the global behaviour of the network by Eq. (2.8)
was confirmed by numerical simulation (Fig. 2.3). Generally, it was found
that this approximation is good whenever the synaptic strength ¢ is such
that, at the time that (part of) the network approaches the transition to the
activated state, the connectivity matrix W is a connected graph, i.e., there is
a path from each cell to any other cell (see Peretto & Niez, 1986). This can
be achieved if ¢ is low, so that for the network to become activated each cell
has to be connected to a number of neighbouring cells. If ¢ is too high, on
the other hand, the network breaks up into sub-networks [see Fig. 2.5(e)], in
which the transition to the activated state may take place at different times,
depending on the local cell density. The phase transition of the whole net-
work is then fragmented and less clear-cut: in some parts of the network the
cells may already be retracting, while in others they are still growing out.
(In Fig. 2.3(a) the relative overshoot is larger than in Fig. 2.4 because c is
staller). The approximation is then no longer valid. Initially, Eq. (2.8) is
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Fig. 2.3 Behaviour of the model (with ¢ = 0.1, N = 64) for different values
of e. Connectivity C, against time, and against average membrane potential X.
C = (1/2) z:\;l,jﬂ A;; = total area of overlap = (NW)/(2¢). (a) Overshoot in
connecticity, e = 0.60. (b) No overshoot, e = 0.97. (c) Oscillations, e = 0.30.

always a good approximation, because development starts with disconnected
cells. At equilibrium, the network is exactly described by Eq. (2.8), since
then X; = F~1(¢), Vi.

Local behaviour

Except for their position, all the cells are exactly identical. Local varia-
tions in cell density, however, suffice to generate a great variability among
individual cells, with respect both to their neuritic field size at equilibrium
[Fig. 2.5(b), (d), (e), (f)] and to their developmental course of field size and
firing behaviour (Fig. 2.4).
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Fig. 2.4 Local behaviour. Same network as in Fig, 2.5. C = (1/2) Z=-1 e Ayj
= total area of overlap = (NW)/(2¢c). In the first row the average behaviour of the
network is shown; 1,...,6 are individual cells. Note that the relative overshoot in B
is less than in C' because (i) C is an area and R; a radius; and (ii) R; contributes
to C only if the neuritic fields actually overlap.

All cells will attain a fixed equilibrium size for which the input from
overlapping cells is such that F(X;) = ¢, Vi. Cells surrounded by a high
number of neighbouring cells tend to become small since a small neuritic
field will already give sufficient overlap with other cells. In contrast, relatively
isolated cells must grow large neuritic fields in order to contact a sufficient
number of cells. One might say that the neuritic fields adapt to the available
space s0 as to cover it optimally. Because all cells have the same firing rate
function and e value, the area of overlap with other cells, E i—1 Wij, will be
the same for all cells. This area is given by [using Eqs (2 6) and (2.7]

(2.10)
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(a) (b)

(e) (3]

Fig. 2.5 Neuritic field sizes. (a) Early stage of development. The same network
as in Fig. 2.3, but with ¢ = 0.4 and € = 0.6. The numbers correspond to those in
Fig. 2.4. (b) The same network as in (a) at equilibrium. Neuritic field size depends
on local cell density. (c¢) Network (N = 25, ¢ = 0.2) at equilibrium with cells at
grid positions. (d) Network (N = 25, ¢ = 0.4) at equilibrium with cells at noisy
grid positions. (e) Network (N = 25) with high synaptic strength (¢ = 2.5), at
equilibrium. Cells develop into sub-networks. (f) Same network as in (e) but with
c=0.3.
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In dense parts of the network, the transition to the activated state takes
place earlier than in less dense parts. Interaction between areas that are, and
those that are not yet activated causes a range of developmental patterns in
firing behaviour. A cell bordering on a cluster of cells with which it has con-
tact at the moment the cluster makes a phase transition, will show a pattern
like Fig. 2.4(3), in which the subsequent relatively rapid decrease in activity
within this cluster, followed by further outgrowth of the border cell gives rise
to a damped oscillation in firing rate. An isolated cell making contact with
a cluster only after this cluster has gone through its phase transition (and
to a large extent completed its subsequent decrease in field sizes and activity
levels), will show a pattern like Fig. 2.4(6). Since the activity within such a
cluster remains essentially constant, this cell will continue to grow out until
its overlap is such that F(X;) = . In contrast, a cell at the heart of such a
cluster will display a pattern like Fig. 2.4(1).

Network size

Synaptic strength determines the size of the resulting network(s) [Fig. 2.5(e),
(f)]. When ¢ is low, cells develop into one, connected network, whereas a

high ¢ can result in a development into separate networks, because contact
with fewer cells is sufficient for F(X;) = e.

Timing of overshoot

In networks with a high density of cells, overshoot takes place earlier than in
low density networks (where neurons have to grow for a longer period of time
in order to make sufficient contacts). Also the higher the synaptic strength
¢, the earlier the overshoot will occur.

If activity is totally blocked, on the other hand, cells keep growing out,
and no reduction in connectivity can take place at all.

2.4 Robustness

The robustness of the results was tested under different parameter values and
alternative formulations of the model.

Firing rate function

The smaller o in Eq. (2.2) is, the steeper F and the larger the hysteresis
loop will be, resulting in a more pronounced overshoot (see Fig. 2.7 and
Section 2.3.1).

Lowering ¢, which translates F to the left, also increases the firing rate
at low X. Thus, without simultaneously lowering o, this would result in a
smaller hysteresis loop. In Fig. 2.6(h), a firing rate function is used with
# =0.2 and @ = 0.05. In fact, F' in Eq. (2.1) may be replaced by any other
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Fig. 2.6 Different firing rate functions (firing rate F versus membrane potential
X) together with the curve defined by Eq. (2.9) (X versus W). Except for linear and
convex functions, all firing rate functions give rise to a hysteresis loop. (a) Piece-
wise linear. (b) Discrete threshold (F = 0.01 for X < 0.5). (¢) F = (1.0—3s)X +s;
s=0.01. (d) F = X*+s; s =0.0025. (e) F = X/(X+K)+s; K =0.25,s =0.01.
(f) Sigmoidal function based on Michaelis-Menten function (De Boer & Perelson,
1991). F = (1 — 8)X3/(6° + X®) +5; 0 = 0.2, s = 0.001. (g) Composite function.
For X < 0.3, F = 0.5/(1 + e®®=X)/%) with o = 0.055 and § = 0.2. For X > 0.3, F
is linear. (h) Sigmoidal function according to Eq. (2.2), with @ = 0.05 and 6 = 0.2.
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Fig. 2.7 The size of the hysteresis loop [Eq. {(2.9)] depends on « of the firing rate
function F(X) [Eq. (2.2)]- (a) The smaller o, the steeper F(X) and (b) the larger
the hysteresis loop. Shown are a = 0.12, 0.10 and 0.08.

function so long as the first part has a positive first and second derivative (or
a discrete threshold) and F(X) > 0 for small X including X = 0. All these
functions will give rise to hysteresis (Fig. 2.6).

Note that for overshoot to occur it is not essential that the firing rate
during the phase transition jumps to a high value relative to its maximum,
as it does with Eq. (2.2). Provided the value of ¢ is changed accordingly, a
function like that of Fig. 2.6(g) can also be used.

Neuron model

As can be seen from Eq. (2.9), 7 is only a scale factor and has no influence on
the shape of the hysteresis curve. The general result is also obtained in some
alternative formulations of the neuron model. For example, in the additive
model (Grossberg, 1988):

dXim_é
dt ~ T

N
+ Y Wi F(X;), (2.11)
j=1
which lacks the factor (1 — X;) in Eq. (2.1), so X; is no longer bounded. In
analogy with Eq. (2.9) we obtain

X/r
F(X)’
which is plotted in Fig. 2.8(a) [with F' according to Eq. (2.2)]. Because F is
a sigmoidal, saturating function, 1 — X; may be omitted without losing hys-

teresis. If, on the other hand, F' is without bound (e.g., a power function)
the saturating factor 1 — X; is necessary for hysteresis.

W = (2.12)
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Fig. 2.8 Steady state dependence (dX/dt = 0) on W for (a) additive model
[Eq. (2.11)] and (b) model according to Eq. (2.13).

A modified form of Eq. (2.1) was introduced by Wilson & Cowan (1972):

dx; X u
2= 2 (1= X)F( Wi X)), (2.13)

j=1

which replaces the sum of nonlinear signals in Eq. (2.1) by a nonlinear func-
tion of the sum. In analogy with Eq. (2.9) we obtain

)_(/'r_

FWX)= "= (2.14)
and, using Eq. (2.2)
W= (0 —aln(r/X —7-1)) /X 0<X<117’ (2.15)

which is plotted in Fig. 2.8(b).

Network size

This is not a crucial parameter. The same phenomena are retained, for
example, in a two-neuron model:

dX; X,

— = ——+4+(1-X1)WF(X

= el 1)WF(X;)

dXs Xo
—— = —— — X F(X7).
o - + (1 = X2)WF(X,)

The conditions for hysteresis and overshoot can now be formulated in terms of
intersecting isoclines dX; /dt = dX2/dt = 0 (Fig. 2.9). In order for hysteresis

(2.16)
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Fig. 2.9 Null-isoclines of the two-neuron model for (a) a low, (b) an intermediate
and (c) a high value of W. The bold line is the X; isocline. For intermediate values
of W, there exist three steady states, of which the middle one is unstable.

to occur there must be three equilibrium points (two stable and one unstable)
for intermediate values of W. This can be achieved by sigmoidal isoclines
(the form of the isoclines is determined by F' and 1 — X;). Even a single
neuron that is connected only to itself (Segal & Furshpan, 1990) is capable
of displaying overshoot; the null-isocline is then exactly Eq. (2.8).

Outgrowth function

Parameter 3 in Eq. (2.6) determines the steepness of (. The form of the
outgrowth function, however, affects only the specific time course of neurite
outgrowth. In fact, any other function G for which G > 0 at low values of
F(X;) and G < 0 at high values of F(X;) may be used. The same results
are also obtained if outgrowth is made directly dependent on X;, instead
of on F(X;). The firing rate at which a neuritic field stabilizes, ¢, is an
especially important parameter of the model in that it determines whether
or not overshoot will occur, and, if so, what its relative size will be.

Connectivity

Whether the connectivity matrix W is symmetric or asymmetric does not
play a role in Eq. (2.9). This implies that modelling axons and dendrites
separately would not affect the main findings. For example, using Eq. (2.4),
with C;; uniformly distributed between 0.0 and 0.8, yielded similar results as
in the experiment of Fig. 2.4. The presence of hysteresis and overshoot also
does not depend on the particular way in which connections between cells
are defined. In Iig. 2.10 the results are shown of an experiment in which
A;j of Eq. (2.3) is simplified to A;; = 1 if the neuritic fields of neuron % and
J overlap, and 4;; = 0 if they do not. Even ignoring spatial structure by
randomly filling in W gives the same general outcome.
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] 20
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Fig. 2.10 The average membrane potential against the average number of con-
nections. Number of connections = (1/N) Ziv:m.:} Aij, in an experiment where
Aij of Eq. (2.3) is simplified to A;; = 1 if neuron 4 and j overlap, and A;; = 0 if
they do not. With N = 25, ¢ = 0.05, ¢ = 0.65 and p = 5.0 1075,

Variation

The results are robust with respect to differences in intrinsic properties, e.g.,
by randomly drawing cell parameters from uniform distributions. Thus, with
« uniformly distributed over [0.08,0.12], 7 ~ UI7,10],6 ~ U[0.4,0.6],¢ ~
U[0.6,0.8],3 ~ U[0.08,0.12], and ¢ = 0.1 and N = 64, similar results were
obtained as in Fig. 2.3. Thus, overshoot can also occur in networks composed
of different cell types.

A network in which ¢ is distributed over a range of values that includes
unstable ones, can still show overshoot as a whole, although the dynamics of
the individual cells may be very complex (see Chapter 3).

Frternal input

The neuron model with external input becomes

N
+(1-X)SEi+ ) WyF(X;) p — 1+ X)L, (217)

=1

dX..:__&
d = 7

where E; and I; are external excitatory and external inhibitory input, re-
spectively; the inhibitory saturation potential is set to -1. In analogy with
Eq. (2.9) we obtain

X/Ir—-(1-X)E+(1+X)I
(1-X)F(X)

W= ~1leX <1, (218)

which is plotted in Fig. 2.11 for (E = 0.015, [ = 0), (E = I = 0; normal
situation), and (I = 0.008, E = 0). Without adjusting «, external excita-
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Fig. 2.11 Effect of external input. External excitatory input makes the hysteresis
loop smaller, whereas inhibitory input _makes it larger. Eq. 2.18 for £ = 0.015, [ =
0; £ = I =0 (normal situation), and I = 0.008, & = 0.

tory input makes the hysteresis loop smaller, while inhibitory input makes
it larger. Thus, with excitatory input, & can be much lower - or even F(X)
such that F(X) = 0 for X below a certain value - and still not result in an
excessively large hysteresis loop.

2.5 Comparison with Empirical Data

The results show some striking similarities, with respect to development of
electrical activity, cell morphology, and connectivity, with what has been
observed in developing in wvitro cultures of dissociated cells.

The sequence of events in the model, with an initial phase of neurite out-
growth while electrical activity is low, an abrupt transition to high activity
when connectivity reaches a critical value, and a phase with neurite retrac-
tion thereafter, has also been observed in cerebellar cultures (Schilling et al.,
1991). Purkinje cell dendrites elongate steadily during the first week after
plating, when electrical activity is still negligible. As a result of cells becom-
ing integrated into a functional neuronal network, electrical activity increases
dramatically between 7-10 days in vitro. During this transition period den-
drites cease their linear growth, retract, and then begin to branch profusely
(in our model implementation, using neuritic fields, no separate branching
events are distinguished). Coinciding with this period, there is an increase
in [Ca?t];,. The notion that electrical activity, presumably by enhancing
[Ca®*];,,, might regulate dendritic growth patterns was further supported by
the observation that blockade of electrical activity resulted in the continued
elongation of dendrites as well as a decrease in [Ca?*];,. The developmental
sequence described above applied to all Purkinje cells, but the actual tim-
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Fig. 2.12 Cultures of dissociated cerebral cortex cells show a transient over-
production of synapse numbers (control). Chronic blockade of activity (by TTX)
largely prevents synapse elimination, whereas intensification (PTX) accelerates the
process. After Van Huizen (1986).

ing varied for individual cells. Variations in timing are also observed in the
model, and occur simply as a result of differences in local cell density. The
model cells are capable at any time of changing the length of their neurites
in response to changes in activity. Morphological changes in Purkinje cells,
too, were found to be reversible, with even mature-looking cells altering their
dendritic growth in response to changes in activity. Schilling et al. (1991)
propose that in the absence of synaptic input dendrites will continue to elon-
gate until they encounter active presynaptic elements. This view is consistent
with our model, in which a disconnected cell will grow out until it has es-
tablished sufficient contacts with active cells (see Section 2.2.2). It is also
consistent with the synaptotrophic hypothesis of dendritic growth (Vaughn,
1989), which posits that growth and branching are initiated and maintained
by synapses formed on growth cones.

As in the simulation model, cultures of dissociated cerebral cortex cells
show a transient overproduction (overshoot) of synapses during development
(Van Huizen et al., 1985, 1987a; Van Huizen, 1986), with a phase of neurite
outgrowth and synapse formation during the first three weeks in vitro being
followed by a substantial elimination of synapses during the week thereafter
(Fig. 2.12). The development of electrical activity in these cultures shows a
good correspondence with what has been described above for cultured Purk-
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inje cells (and for the simulation model). With increasing synaptic density,
single neuron firing and network activity - which takes the form of repetitive
slow field potentials (Corner & Crain, 1972; Van Qoyen et al., 1992a, b) -
abruptly appear within a window of a few days (Habets et al., 1987). In such
cultures, electrical activity appears to control both neurite outgrowth and
synapse elimination: chronic blockade of electrical activity enhanced neurite
outgrowth (Van Huizen & Romijn, 1987) and prevented synapse elimination
during the fourth week (Van Huizen et al., 1985). In contrast, chronic in-
tensification of activity accelerated the formation of synapses and hastened
the process of synapse elimination by almost a week (Van Huizen et al.,
1987a)(Fig. 2.12). The model responds in a similar way to suppression or
intensification of electrical activity (see Section 2.3.2, Timing of overshoot).

Different cell types in the rat cerebral cortex show different growth curves
with respect to radial distance and total dendritic length (Uylings et al.,
1990), with cells displaying clear, minor or no overshoot at all. Some of these
curves show a clear resemblance to the ones observed in the model.

2.6 Conclusions and Discussion

Many of the processes that play a role in network development are depen-
dent upon the electrical activity of the neurons and network itself, so that
a tight coupling exists between network formation and network activity. In
this study, we have examined the consequences for network ontogeny of one
of these processes, namely activity-dependent neurite outgrowth. We have
demonstrated that the very presence of this mechanism in combination with
another elementary neuronal property - a non-linear neuron response func-
tion, i.e., a threshold for action potential generation - is sufficient to generate
overshoot phenomena with respect to connectivity. The results are robust
under: different firing rate functions (provided they have a type of firing
threshold and low but non-zero values for sub-threshold membrane poten-
tials, i.e., spontaneous activity); variance among neurons in all parameters;
different neurite outgrowth functions (provided a high level of electrical ac-
tivity results in retraction and a low level in outgrowth); symmetric versus
asymmetric connectivity matrix; the way in which connections are defined;
network size and different neuron models.

The mechanism underlying the generation of overshoot in this simple
model may provide part of the explanation for overshoot phenomena in the
developing nervous system, at least for those which have been observed in
tissue cultures of dissociated cells. In such cultures, the sequence of events
corresponds closely to that observed in the simulation model.

It should be emphasized that other, more realistic, descriptions of neurite
outgrowth and synaptogenesis (e.g., with individual neurites instead of a
circular neuritic field, and possibly some form of conservation of, or limit
upon, the total numbers of synapses per cell rather than simply assuming
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that the larger the overlap of neuritic fields, the more synapses will be made)
are merely different mappings onto the connectivity matrix W. Although
this could affect the particular network structure, overshoot would still take
place.

The neuritic field size of the model cells adapts to the local cell density,
resulting in small fields in dense areas and larger ones in sparse areas. In
this respect, it is interesting that the dendritic fields of ganglion cells, the
cell bodies of which are arrayed in a regular mosaic, have been reported to
achieve a uniform coverage of the retina so that every point of the visual space
is ‘seen’ by at least one cell (Wissle et al, 1981). From these observations
it was inferred that some kind of growth mechanism must exist whereby
local interactions among cells regulate dendritic field size. Activity-dependent
outgrowth may be a candidate for such a mechanism.

Hysteresis may provide a mechanism by which overshoot phenomena in
general can be understood. To illustrate this, consider the following variant
of the model. Suppose that cell death is more likely at (very) high levels of
electrical activity, and that neurons (whose neuritic fields are now taken to be
constant) are produced at a given source, transported and incorporated into
a network during development. As before, neurons become connected when
their neuritic fields overlap. At a given cell density, the network will become
activated and start losing cells if the resulting activity is too high. Because of
hysteresis, a higher cell density is necessary to trigger activity in a quiescent
network than to sustain it once the network has been activated, thus giving
rise to a reduction in cell numbers. Such a transient overproduction of cells
has been observed in the development of, for example, the suprachiasmatic
nucleus (Swaab et al.,, 1990). Another variant of the model would be one in
which the neuritic fields are more or less constant and (partly) overlapping,
while it is now the formation of new synapses or the strengthening of older
ones which is activity-dependent. This would lead to exactly the same results,
with overshoot in number of synapses or synaptic strength, respectively.

For some values of €, the firing rate at which a given neuritic feld re-
mains constant, the model can generate sustained oscillations in overall ac-
tivity (and connectivity). The period of these oscillations is determined by
p, the rate of outgrowth of neuritic fields or, in the alternative formulations
of the model, the rate at which synapses are formed/destroyed or existing
ones are strengthened/weakened. Since these changes can occur on a time
scale of hours, this mechanism might provide a possible explanation for the
occurrence of slow rhythmic activity in various brain areas (e.g., circadian
rhythms in the suprachiasmatic nucleus).

With respect to overshoot in connectivity, there may exist a parallel with
the developing immune system. In the immune system, which may function
as a network (Jerne, 1974), a high idiotypic connectivity (the number of clones
with which a given clone interacts) is found during early ontogeny (Holmberg
et al., 1986). A possible explanation might be that highly connected clones,
which become over-stimulated or suppressed if clones are large, can only
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be maintained during early life when all clones are small and the network
has not yet filled with antibodies (De Boer & Perelson, 1991). In analogy,
neurons in our network can only maintain a high number of connections
during early development when the network is not yet ‘filled’ with activity.
Once the network is activated, these neurons become over-stimulated and
subsequently lose some of their connections.

Overshoot phenomena may also be involved in learning. Doyle et al.
(1992) presented evidence to suggest that information storage during learn-
ing may be based on connectivity changes mediated by a replay of early
developmental events. In this concept, information acquisition may induce
a transient overproduction of synaptic contacts in a given network, followed
by an activity-dependent selection to yield a new circuitry.

The present study might also have relevance for understanding the onto-
genetic origins of epilepsy. If, for whatever reason, activity is blocked during
development, insufficient reduction in connectivity will result. This could lead
in adulthood, assuming that pruning of connections is largely restricted to a
‘critical period’, to a network prone to epileptic-like activity because of its ab-
normally high degree of connectivity. Interestingly, Ben-Ari & Represa (1990)
have suggested that use-dependent sprouting may play a role in epilepsy.

Damaging a proportion of the model cells results in increased neurite
outgrowth of the remaining cells until all the cells have the same activity
level as before. This is reminiscent of what happens following early prefrontal
cortex lesions in rats. In such animals, an increase in dendritic arborization is
found - possibly accompanied by synapse formation - which seems to correlate
with the occurrence of behavioural sparing of function (Kolb & Kibb, 1991).

If the level of spontaneous activity is too low (or the synapses too weak)
for the network to become activated by its intrinsic activity, neurites would
continue growing out until at some stage during development the network
may become activated by external input (e.g., sensory input). This could
then result in retraction of neurites, the network being hyperactive due to its
high degree of connectivity. Such a scenario would also give rise to overshoot.
Age-related decreases in spine density and in total length of dendrites have
indeed been reported for the development of Purkinje cells in vivo (Pentney,
1986). It may be hypothesized that changes in levels of electrical activity
play a role in these morphological alterations.

The intracellular calcium concentration ([Ca?t);y,) is likely to be one of the
primary variables controlling neurite outgrowth. One of the factors that can
change [CaZ*);,, and hence neurite outgrowth, is electrical activity, which, in
turn, is dependent upon network connectivity and network dynamics. There-
fore, the mechanisms regulating [Ca?*];, may be major determinants of en-
tire patterns of neuronal circuitry, as was suggested by Kater et al. (1988).
Indeed, with the help of a relatively simple model of a developing neural net-
work we have shown that activity-dependent neurite outgrowth can have a
profound effect on network structure during development in that it generates
pronounced overshoot phenomena with respect to connectivity.
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Appendix

Derivation of Eq. (2.8). Ta.kmg the average over i in Eq. (2.7) and writing
X; =X+ AX;, with X = ¥ 21_ X;, yield

o X 1-X& 1 &
=-5 .

_ N
e —“‘A'T—ZF(X ng = ﬁzF ')ZAXiWij (Al)

j=1 i=1 i=1

Take Y v, Wi; = NW.;, and write Wy; = W,; + A; W

e N
0=—?+(1— ZF W.——ZF X)) AXiAW;  (A2)

=1 i=1

If AX; and A;W;; are uncorrelated or small:
e e .
0z —= 4+ (1- X)) F(X;)W,; (A.3)

Teke F(X;) = F(X) + AX;F/(X) + ..., and write W = & 22 W, with

= N
0~ —3:- +(A-X)FX)W +(1-X)F (X)) AX; AW +..., (A4)
=1

= N = N
where W =3 5, W, = (1/N) 2i=1,5=1 Wij.
If, again, AX; and AW.; are uncorrelated or small, and ignoring higher order
terms in the Taylor expansion:

0~ —

§+ (1- X)WF(X).
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