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Complex Periodic Behaviour
in a Neural Network Model
with Activity-Dependent
Neurite Outgrowth

A. van QOoyen & J. van Pelt, J. Theor. Biol., in press.

In the previous chapter we studied networks in which all the cells reacted in
the same way on electrical activity. Since experiments have shown that neu-
rons may in fact react differentially, we study in this chapter networks made
up of cells among which the level of activity above which the neurites of a
cell retract varies. We show that this can lead to complex periodic behaviour
in electrical activity (and connectivity) of individual cells. The precise be-
haviour depends on the spatial distribution of the cells and the distribution
of the outgrowth properties over the cells. Any other cellular property that
adapts slowly to electrical activity such that neuronal activity is attempted
to be maintained at a given level, can lead to similar results.
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3.1 Introduction

Electrical activity plays an important role in the development of neurons
into functional networks. Many processes that determine connectivity and
neuronal function are modulated by electrical activity (see Chapter 1). As
a result of these activity-dependent processes, a reciprocal influence exists
between neuronal activity (‘fast dynamics’) and the development of connec-
tivity and neuronal function (‘slow dynamics’). In this article we focus on
activity-dependent neurite outgrowth.

A number of studies have demonstrated that neurotransmitters and elec-
trical activity can directly affect neurite outgrowth (for review see Mattson,
1988). Neurites stop growing or even retract under conditions of (high) neu-
ronal activity (Cohan & Kater, 1986; Fields et al., 1990a; Schilling et al.,
1991; Grumbacher-Reinert & Nicholls, 1992). Such alterations in outgrowth
are mediated by changes in intracellular calcium concentrations ([Ca2t;,)
(Cohan et al., 1987; Kater et al., 1988; Mattson, 1988; Kater & Mills, 1991).
Depolarization leads to increases in [Ca?*];,, and many aspects of the motil-
ity of neurites are regulated by Ca?*. In connection with these observations,
the Ca?* theory of neurite outgrowth has been proposed (e.g., Kater et al.,
1988; 1990), which states that low [Ca®*];, (low level of electrical activity)
stimulates outgrowth, higher concentrations cause a cessation of outgrowth,
and still higher concentrations (high level of electrical activity) lead to re-
gression of neurites. In addition, outgrowth is also blocked if [Ca2t];, is too
low.

Previously we studied networks in which the critical level of electrical ac-
tivity (or [Ca®*];,) above which the neurites of a cell retract, is the same for
all cells. However, this level is in fact different for different classes of neurons
(Guthrie et al., 1988; Kater et al., 1988; 1990). What constitutes a high level
of electrical activity for one neuron may actually fall within the permissive
outgrowth range of another. Such differences could be due to different initial
or basal levels of intracellular Ca?* or to different Ca?* buffering capacities
(Kater et al, 1988). In the light of this, we consider in the present study
networks made up of cells that have such differences in outgrowth properties.

The model is described in Section 3.2. A brief summary of previous results
is given in Section 3.3.1. The periodic behaviour with respect to connectivity
and electrical activity in cells within a (large) network is described in Sec-
tion 3.3.2. This behaviour will be qualitatively explained in Section 3.3.3
using a series of simplified models. In Section 3.3.4 it is shown that the same
results are obtained when neurite outgrowth is replaced by any other slow,
activity-dependent process that act to stabilize neuronal electrical activity
levels (*homeostasis’). Preliminary results of this study have been reported
in Van Ooyen & Van Pelt, 1994b.
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3.2 The Model

The model is used as a tool to explore the possible consequences of activity-
dependent neurite outgrowth for network behaviour, in a general and qual-
itative sense. The initially disconnected neurons organize themselves into
a network under influence of endogenous electrical activity only. Growing
neurons are modelled as expanding neuritic fields, and the outgrowth of each
neuron depends upon its own level of activity. Neurons become connected
when their neuritic fields overlap. In this study, all connections are taken
to be excitatory. The model is inspired in part by tissue cultures of dissoci-
ated cerebral cortex cells (Van Huizen, 1986; Van Huizen et al., 1985, 1987a;
Ramakers et al., 1991), which become organized into a network by neurite
outgrowth and synaptogenesis without the influence of external input.

The model is the same as the one used in previous studies (Van Qoyen &
Van Pelt, 1994a, b; Van Ooyen et al., 1995), and is studied both analyticaily
and by means of numerical solution, employing the variable time step Runge-
Kutta integrator provided by Press et al. (1988). The simplified models
(Sections 3.3.3 and 3.3.4) are analysed using GRIND (De Boer, 1983).

3.2.1 Neuron Model

To describe neuronal activity, the shunting model (Grossberg, 1988) is used,
in which excitatory inputs drive the membrane potential towards a finite
maximum or saturation potential. For a purely excitatory network, after
transformation to dimensionless equations (e.g., Carpenter, 1983; Van Qoyen
et al., 1995a), this model becomes

dX;

N
= = —Xi + (1 - Xi) > WyF(X;), (3.1)

J=1

where X; represents the (time averaged) membrane potential of cell 4, scaled
between the saturation potential (set to 1) and the resting membrane po-
tential (set to 0), IV is the total number of excitatory cells, T is the time in
units of the membrane time constant, W;; is the connection strength between
neuron j and ¢ (W;; > 0; Wj; is defined in Section 3.2.2), and

1

B{X) =g T -X)/a

(3.2)

where F(X) is the mean firing rate (with its maximum set to 1), & determines
the steepness of the function and f represents the firing threshold. The low
firing rate when the membrane potential is sub-threshold can be considered
as representing spontaneous activity, arising from threshold or membrane
potential fluctuations (for references see Van Ooyen et al., 1995a).
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3.2.2 Outgrowth and Connectivity

Neurons are randomly placed on a two-dimensional surface. Each neuron is
given a circular ‘neuritic field’, the radius of which is variable. When two such
fields overlap, both neurons become connected with a strength proportional
to the area of overlap:

Wf-ij = A,;jS, (33)

where A;; = Aj; is the amount of overlap (Ai = 0), representing the total
number of synapses formed reciprocally between neurons i and 7, while S
represents the average synaptic strength. In this abstraction, no distinction
has been made between axons and dendrites, but in Section 3.3.4 it is tested
whether or not such asymmetry affects the results.

Since the effect of activity on outgrowth is mediated by intracellular cal-
cium, and since the firing of action potentials leads to increases in [Ca?t)i
(see Section 3.1), we take the outgrowth of each individual cell to be depen-
dent upon its firing rate:

dR;
— = X)), :
T = PG(F(X:) (3.9
where R; is the radius of the circular neuritic field of neuron i, and p deter-
mines the rate of outgrowth. Note, that connection strength is not directly
modelled but is a function of neuritic field size. The function G has a zero
crossing at u = ¢; such that

for u<eg G(u)>0
for u>¢ G(u) <0 (3.5)
for u=¢ G(u)=0.

Equation 3.5 is a phenomenological description of the theory of Kater et
al. (see Section 3.1) to the effect that relatively low electrical activity (i-e.,
below ‘setpoint’ ¢;) allows neurite outgrowth, while sufficiently high activity
(i.e., above €;) causes neurites to retract (excluding that outgrowth also does
not seem to take place at very low levels of activity). To take into account
the empirical observation that the level of electrical activity (or [Ca?t];,)
above which the neurites of a cell retract is not the same for all cells (see
Section 3.1), ¢; is allowed to differ among cells.

For the network model (Sections 3.3.1 and 3.3.2), the following growth
function was used:

2
1 + elei—F(X:))/8°

G(F(X:) =1 (3.6)

where ( determines the steepness of G. This function remains in the bounded
range < —1,1 >.




Periodic Behaviour 59

Qutgrowth of neurons is on a time scale of days or weeks (e.g., Van Huizen
et al., 1985, 1987a; Van Huizen, 1986; Schilling et al., 1991), so that connec-
tivity is quasi-stationary on the time scale of membrane potential dynamics
(i.e., p small). To avoid unnecessarily slowing down the simulations, p is
chosen as large as possible while maintaining the quasi-stationary approxi-
mation. In the simulations of the network model, we use p = 0.0001. As
nominal values for the other parameters, for both the network model and the
simplified models, we chose ¢ = 0.5, a = 0.10, § = 0.10. For ¢, all possible
values are considered.

3.3 Results
3.3.1 Identical Outgrowth Function

In this section we briefly summarize the previous results relevant for this
study. The variations in W take place much more slowly than those in X,
so that W can in a first approximation be considered as a parameter of the
system. For a given W in a purely excitatory network, the equilibrium points
are solutions of [see Eq. (3.1)]

N
0=-Xi+(1- X)) W, F(X;) Vi, (3.7)

j=1

If all the cells have the same ¢;, and the variations in X; are small (relative to
X, the average membrane potential of the network), the average connection
strength W can be written as a function of X (Van Ooyen & Van Pelt, 1994a):

o X _
W_(l—X)F(X) 0<X <1 (3.8)
The slow movement of the system determined by the dynamics in connectivity
takes place along the manifold defined by Eq. 3.8 [see Fig. 3.1(a)]. It is the
so-called slow manifold, and is the same as the equilibrium manifold of X
(defined by dX /dT = 0) for W as a parameter of the system. The manifold is
S-shaped (‘hysteresis loop’) which underlies the emergence of overshoot and
oscillations (further see caption of Fig. 3.1).

3.3.2 Network of Cells Having Different Outgrowth Functions

For a network in which ¢ is different for different cells, the resulting network
behaviour depends also on the spatial distribution of the cells (e.g., random
as opposed to regular) as well as on the distribution of the e values over
the cells. Especially if the spatial distribution of cells is such that all of
them become strongly connected to many of their neighbours (as will happen
with a regular distribution of cells), not all of the cells need to have an ¢ in
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Fig. 3.1 Hysteresis. (a) The S-shaped slow manifold of X (dX/dT = 0) in the
(W, X)-plane (W = (l/N)Ef;ld=1 Wi;), as defined by Eq. (3.8). When W is
regarded as a parameter, states on BC are unstable, while the others are stable
(bold lines). The horizontal line indicate X = F~'(e) (F~! is the inverse of F).
Above and below that line, W decreases and increases, respectively [see Eq. (3.6)].
The connectivity, W, is quasi-stationary on the time scale of membrane potential
dynamics, and, starting at 4, X will follow the branch AB, until it reaches B, where
it jumps to the upper branch. (b1) If the intersection point of the horizontal line is
on OD, W decreases again, and a developing network has to go through a phase in
which W is higher than in the final situation (i.e., ‘overshoot’ in W). The trajectory
is shown as a bold line. In (b2) W, and in (b3) X is shown against time. (c1)-(c3)
An € such that the intersection point is on BC, results in regular oscillations.

the non-oscillatory range (see Fig. 3.1) in order for both the network as a
whole and the individual cells to show an absence of oscillations (in both
connectivity and electrical activity). For example, in a network consisting of
16 regularly placed cells, in which only 5 cells have e = 0.8 (which, if all cells
had this value, would cause an overshoot in connectivity and no subsequent
oscillations), and the rest have e = 0.4 (which, if all cells had this value, would
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Fig. 3.2 Behaviour of individual cells in a network [governed by Eqgs (3.1) and
(3.6)]. (a) Network of 16 cells placed on a grid. Five cells have ¢ = 0.8, the rest has
€ = 0.4. (al) Overshoot in total connectivity (C = Ef’;u:l Aij). (a2) Average
membrane potential in the network. (a3)-(a5) Membrane potential of 3 different
cells. The cell of (a4) has € = 0.4, the rest has e = 0.8. (b) Membrane potential
of 4 different cells in a network of 16 randomly placed cells in which € is uniformly
distributed between 0.05 and 0.8. In all figures the initial transients are skipped.
(b1) e = 0.65. (b2) e = 0.67. (b3) e = 0.36. (b4) e = 0.10. (c) Network
consisting of a group of 2 cells (both have € = 0.68) neighbouring to a large group
of 19 cells (all have € = 0.15). Initial transients are skipped. (cl) e = 0.15. (c2)
€ = 0.68.
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cause sustained oscillations in connectivity and electrical activity) still shows
2 ‘normal’ overshoot sequence, without any oscillations (also not in any of the
individual cells). With a different, less central distribution of these 5 cells,
the individual cells show oscillations between quiescent and activated state
with different amplitudes [see Fig. 3.2(a3)-(a5)]. Note, that the network as
a whole still shows overshoot with only small oscillations in connectivity in
the final state [Fig. 3.2(al)].

Especially if the spatial distribution of cells is such that they do not
all become equally strongly connected to their neighbours (as will happen
with a random distribution), complex periodic behaviour can occur with
individual cells displaying oscillations that differ in frequency and amplitude
[see Fig. 3.2(b1)-(b4), (c1), (c2)]. The network as a whole will then show an
overshoot with oscillations in connectivity (and electrical activity) in the final
state, the amplitude of which will vary among different networks, depending
on the distribution of € values.

3.3.3 Simplifications

To derive a simplification, let us consider two cell types, X and Y, that differ
only in their respective € values, ex and ey. As a spatial configuration that
can oceur in the network, we consider two X cells and two Y cells that, for
simplicity, are placed in such a way that the X (Y) cells are identical to each
other with respect to the overlap of their neuritic fields with those of the
other cell type (Fig. 3.3), so that, starting with the same initial conditions,
their dynamics will be the same: each X (Y) cell is, as it were, connected to
itself. For the connection strengths between the cells, we have

Wxx = tp(Rx)S
Wyy = @(Ry)S (3.9)

Wxy = Wyx = ¥(Rx,Ry)S = EWxx, Wyy),

where Wxx (Wyy) is the connection strength between the two X (Y) cells
with radius Rx (Ry), Wxy is the connection strength between an X and
Y cell, ¢ and % are functions determining the area of overlap between the
cells [also see Eq. (3.3)], and S > 0 represents synaptic strength. For the
dynamics of W (under the restriction that W > 0) we have

AWxx _ osip o dBx
= T O (Bx)—g7
(3.10)
dWyy . dRy
o oriEa

Since the outgrowing circular neuritic field is just one of the possible ways
to model connectivity, we are not interested in the precise form of ¢ and
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Fig. 3.3 The spatial distribution of the cells determines the relative connection
strengths. (a) The connection strength between both X (Y") cells is the same as
that between an X and Y cell. (b) The connection strength between both X X)
cells is different from that between an X and Y cell.

¢, which should not affect the essential findings. We therefore took simple
functions ¢ and £, which indeed turned out to be sufficient for capturing the
essential behaviour. We take ¢ such that ¢/(R) = a > 0. Thus

dWxx o dRx _

T = Sa = ¢G(X) o
dWyy  _ dRy _ '
ar . = Segp = G,

where ¢ = apS. The growth function G is taken to depend directly on the
membrane potential instead of on the firing rate (this gives the same results,
also in the network, see Van Ooyen & Van Pelt, 1994a), and, since the precise
form of G'is not crucial as long as it obeys Eq. (3.5), the simplest form of G
isused: G(X) =ex — X, G(Y) =€y — Y. For ¢ we take

Wxy = p(Wxx + Wyy), (3.12)

where p incorporates the spatial component (i.e., distance between the cells,
see Fig. 3.3) that can cause the connection strength between the two X (Y)
cells to be different from that between X and ¥V (if p=0.5and Wxx = Wyy,
all connection strengths are the same).
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Thus the complete model becomes

% = —X+(1-X)[WxxF(X) + Wy F(Y)]

‘;_;’ = Y +(1-Y)[WyyF(Y) + WyxF(X)]

dv:;X = qlex — X) (315)
Wxy = Wyx = p(Wxx + Wyy).

In all the simulations, we use ¢ = 0.005. An alternative inﬁerpretation
of Eq 3.13 is that X and Y represent the average membrane potential of a
population of X and Y cells, respectively (provided the variations among the
individual cells are small relative to the average values, see Van Ooyen & Van
Pelt, 1994a), and the W's the average connection strength impinging on a
given cell.

The complex periodic behaviour seen in the network arises also in this
simplified model.. As already mentioned, the precise form of the functions ©,
¥ (and &) is not essential. For example, if we take @(Rx) ~ R%, ¢(Ry) ~ R}
and ¢(Rx,Ry) ~ Rx Ry [with dRx/dT = pG(X) and dRy [dT = pG(Y)]
very similar results are obtained. In order to understand the basis for the
occurrence of this behaviour, let us consider some further simplifications.

Model T
To study the effect of input on an X or ¥ cell, the following model is used:

.‘(’% = —X+(1-X)[WxxF(X)+1]
- (3.14)
T g ~ L,

There is only one cell type, and the input from Y in Eq. (3.13) is replaced by
a constant input /. This enables us to show how the slow manifold of X, and
consequently the behaviour of the system, changes under input. Increasing
I causes the turning points of the manifold to move towards each other (in
both Wx x and X) so that the hysteresis loop becomes smaller and finally
disappears (Fig. 3.4).

For ex = 0.51 and I = 0, for example, the system described by Eq. (3.14)
shows oscillations (in Wxx and X) which become smaller for I > 0. They
have disappeared when I = 0.2, under which condition the system shows
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Fig. 3.4 External input makes the hysteresis loop of the slow manifold of X
(dX/dT = 0) smaller [see Eq. (3.14)]. Shown are the manifolds for I — 0,0.1, 02
and 0.4. The horizontal lines indicate the position of ex = 0.51 and ex = 0.35,
respectively. The meaning of the bold lines is as in Fig. 3.1(a).

overshoot (starting with Wxx = 0). For ex = 0.35 the system does not
show overshoot no matter what the value of I. If ¢ x is such that overshoot

occurs for I = 0, it will also occur for higher values of T , until the hysteresis
loop has disappeared.

Model IT

Instead of a fixed input I, we now let the input to X be generated by Y, We

further fix Wxy at a non-zero value, and set Wy x = 0 so that Y behaves
independently of X. Thus

% = X+ (1-X)[WxxF(X) + Wy F(Y)]

ay

dT

dWx x
dar

dW;
& = e -Y)

= Y+ ([1-Y)WyyF(Y)

= glex — X) (3.15)

Wxy —

To describe the behaviour of this and subsequent models, we shall distin-
guish a number of different cases that are characterized by ex and ey and
the resulting behaviour in X and ¥ when X and ¥ are uncoupled (i.e., when
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Wxy = Wyx = 0, which gives two independent equations identical to
Eq. (3.14) with I = 0). Thus, ex (ey) can be such that there is a stable
point on the lower branch of the slow manifold of X (Y) [stable-1b], a stable
point on the upper branch (stable-ub), or an unstable point, which causes
regular oscillations. In Fig. 3.1(a) this corresponds to an intersection point
on branch AB, CD or BC, respectively. The coupling between X and ¥V can
give rise to complex periodic behaviour. In the following we give an inventory
of the qualitatively different behaviours we found. In the figures, manifolds
of X (Y) defined as dX/dT = 0 (dY/dT = 0) for a given value of Y (X),
are drawn in the (W, X) [(W,Y)]-plane.

L. ey = stable-lb or stable-ub, ex = stable-Ib or stable-ub.

Since there is no influence from X to ¥, ¥ goes to ey independently of
ex, and Wxy F(Y) becomes constant.

That is, we end up with the same situation as in Eq. (3.14) with I > 0.
The influence of ¥ does not change the stability of the points: X always
goes to a stable point [Fig. 3.5(a)].

2. ey = stable-Ib or stable-ub, ex = unstable.

Again WxyF(Y') becomes constant, and depending on the value of
nyF(Gy)
o the oscillations in X (and Wx x) become smaller [Fig. 3.5(b)], or;
e the oscillations disappear completely (ie., stable point).
3. ey = unstable, ex = stable-ub or stable-Ib.

In this case ¥ oscillates, and independently of X. Because of the nature
of these oscillations (i.e., being the result of Wyy varying very slowly
relative to the dynamics of Y), Y essentially jumps between values

Fig. 3.5 Behaviour of the model described by Eq. (3.15) for different values of
ex and ey. In each figure of the first column the bold line is the trajectory of the
system in the (Wxx, X)-plane, the thin horizontal line indicates the value of ex,
and the thin S-shaped lines are the manifolds of X defined as dX /dT=0for ¥ =0
(lower curve) and Y = 0.7 (upper curve), respectively. In each corresponding figure
of the second column, the behaviour of X (bold line) and Y is plotted against time.
(a) ev = 0.7, ex = 0.6, Wxy = 0.25. Note that the transition from quiescent to
activated state takes place not at the turning point of the slow manifold but at a
lower Wx x value because of the additional drive from Y. (b) ey = 0.7, ex = 0.4,
Wxy = 0.25. (c) ey =04, ex = 0.7, Wxy = 1.0. (d) ey = 0.4, ex = 0.685,
Wxy = 1.0. (e) ey = 04, ex = 0.1, Wxy = 0.045. (f) ey = 0.5, ex = 0.15,
Wxy = 0.05. In all figures, except those of (a) and the time plot of (b), the initial
transients are skipped.
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on the lower branch (quiescent state) and values on the upper branch
(activated state), while spending very little time at values in between.
As is illustrated in Fig. 3.4, the manifold of X is different for a low or
a high input (i.e., ¥). In Fig. 3.5 the manifold of X is drawn for ¥
at the quiescent state (represented by ¥ = 0) and the activated state
(represented by ¥ = 0.7). Since X attempts to follow its manifold,
any time Y jumps from quiescent to activated state or vice versa, the
behaviour of X can to a good approximation be described as jumping
between these two manifolds (also see Fig. 3.6(a), in which the complete
3D picture is given).

X
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Fig. 3.8 Behaviour of the model described by Eq. (3.15) for ey = 0.4, ex = 0.6,
Wxy = 1.0. Initial transients are skipped. (a) The bold line is the trajectory of
the system in (Wxx, X, Y )-space. The thin lines are the manifolds of X defined
as dX/dT = 0 for different values of ¥. (b) The bold line is the trajectory of the
system in the (Wxx, X)-plane. The thin lines are the manifolds of X defined as
dX/dT = 0 for Y = 0 (lower curve) and ¥ = 0.7 (upper curve), respectively. (c)
Wx x (bold line) and Wyy against time. (d) X (bold line) and ¥ against time.




Periodic Behaviour 69

The oscillations in ¥ can cause X to make

e small oscillations (i.e., X stays at the upper branch if ex = stable-
ub [Fig. 3.5(c)] or at the lower branch if ex = stable-Ib );

e oscillations between quiescent and activated state, at the same
frequency as those of Y,

e oscillations between quiescent and activated state, at a lower fre-
quency than those of ¥ [Fig. 3.5(d), (e)].

4. ey = unstable, ex = unstable.

X will oscillate between quiescent and activated state

e at the same frequency of ¥;

e at a lower frequency of Y [Fig. 3.5(f)].

In all cases, ex and ey determine not only whether or not oscillations oc-
cur when the cells are uncoupled, but also the relative speed with which X
and Y move along their slow manifolds. Together with the strength of the
interaction, Wiy, this determines the precise form of the oscillations when
the cells are coupled. In Fig. 3.5(c), for example, ¥ drops to the quiescent
state at a moment that X has reached a value such that X will not drop to
the lower branch when Y is low. It does drop down when ex is only slightly
smaller [as in Fig. 3.5(d)].

Model II1

In the following model, X also influences Y, and the only difference from
Eq. (3.13) is that Wxy = Wy x is kept constant. Thus

j_);, = —X+(1-X)[WxxF(X)+WxyF(Y)]

% = Y +(1-Y) [WyyF(Y) + Wyx F(X)]

o, feg =) e
dtg;Y = gley —Y)

Wxy = Wyx = C.

Note that, since the model is symmetrical in X and Y, the behaviour we find
with €x = unstable and ey is stable-ub, for example, is the same as with ¢y
= unstable and ey is stable-ub, interchanging X and Y.
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1. ey = stable-lb or stable-ub, ex = stable-lb or stable-ub.

As in the previous models, the influence of X on Y and vice versa
does not change the stability of the points: X and ¥ will always go to
stable points. The interesting cases are those with one or both of the
€’s unstable.

2. ex = unstable, ¢y = stable-ub.

o if Wxy is large enough ¥ can make X to go to a stable point;

e with a smaller Wxy, X continues to oscillate while, since in con-
trast to the previous model X also influences Y, ¥ will oscillate
as well, either remaining on the upper branch [Fig. 3.7(al)-(a3)],
or

e if ey is somewhat smaller, eventually falling down, together with
X, to the lower branch [Fig 3.7(b1)-(b4)]. The periodicity of this
pattern is determined by ey: a slightly higher value results in a
longer period [Fig. 3.7(c)], and a slightly smaller ey results in a
shorter period [Fig. 3.7(d)]. For some values, the period length is
no longer constant: extremely long periods alternate ‘chaotically’
with much shorter ones (not shown);

e if ex is such that only if ¥ is close to ey, ex is in the oscillatory
region, a type of behaviour as illustrated in Fig. 3.7(el)-(e3) can
be seen: ¥ moves slowly towards ey and, when it is close enough,
X suddenly drops down to the lower branch, as a result of which
also Y falls. A lower value of ey makes the process faster, resulting
in a shorter period;

Fig. 3.7 Behaviour of the model described by Eq. (3.16) for different values of
€x, €v and Wxy. In each of the time plots the bold line indicates X [Wxx in
(b4)] and the thin line ¥ [Wyy in (b4)], except in (h2). In each of the (Wxx, X)
((Wyvy,Y)]-planes, the thin lines are the manifolds of X (Y defined as dX/dT = 0
(dY/dT = 0) for a given value of ¥ (X); these values will be denoted below. The
bold line in each plane is the trajectory of the system. In all figures the initial
transients are skipped. (a) ey = 0.65, ex = 0.4, Wxy = 0.3. (al) Y = 0.65. (a2)
X = 0.3 (lower curve) and X = 0.6 (upper curve). (b) ey = 0.6, ex = 0.4, Wxy
= 0.3. (bl) ¥ = 0 (lower curve), ¥ = 0.6 (middle curve), and Y = 0.8 (upper
curve). (b2) X = 0.2 (lower curve), X = 0.6 (upper curve). (c) ey = 0.604, ex
= 04, Wxy = 0.3. (d) ey = 0.56, ex = 0.4, Wxy = 0.3. (E) ey = 0.61, ex =
0.5, Wxy = 0.3. (el) Y = 0 (lower curve), Y = 0.61 (upper curve). (e2) X =0
(lower curve), X = 0.5 (upper curve). (f) ey = 0.58, ex = 0.35, Wxy = 0.3. (f1)
X =0. (g) ev = 0.58, ex = 0.35, Wxy = 0.15. (h) ey = 0.09, ex = 0.4, Wxy =
0.05. (h1) X = 0 (lower curve), X = 0.7 (upper curve). (h2) X and ¥ (bold line)
against time.




72 Chapter 3

e a kind of hybrid situation between Fig. 3.7(b3) and Fig. 3.7(e3) is
seen in Fig. 3.7(f2). Because the relative speed with which X and
Y move along their branches is now different, ¥ does initially not
drop down to the low branch of its manifold but is just ‘rescued’ by
the high branch, so that X can still make several oscillations. The
relative speed with which X and ¥ move (which can be altered by
changing ex and ey) determines the number of these oscillations.
Wxy determines the period of these oscillations: the lower Wxy,
the larger the period [Fig. 3.7(g)].

3. ex = unstable, ey = stable-1b.

e for low ey, Y makes small oscillations staying on the lower branch
of its manifold, while X oscillates between quiescent and activated
state;

e if ¢y is higher, Y can also make oscillations between quiescent and
activated state, at the same frequency as those of X, or;

e at a lower frequency [Fig. 3.7(h1), (h2)].

4. ex = unstable, ey = unstable.

As in the previous model, ¥ will oscillate between quiescent and acti-
vated state

e at the same frequency of X;
e at a lower frequency of X.

Full model

The last step to Eq. (3.13) is to have Wxy depend upon Wxx and Wyy,
instead of being constant as in Eq. (3.16). With Wiy variable, we found the
whole range of behaviours as described for Model III (with p ranging from
0.01 to 0.3). No qualitatively different behaviours could be found, possibly
because the changes in Wxy are mostly, via Wxx and Wyy, parallel to
those in X and Y, so that for the effective interactions [i.e., Wxy F(Y") and
Wxvy F(X)] a constant value for Wxy does not affect the system very much.

Comparison with network model

A network consisting of a small group of cells of one type (characterized by
its € value) bordering to a much larger group of cells of another type, can, be-
cause of the large difference in cell number, be compared to simplified model
II, in which cell Y (representing the largest population in the network) influ-
ences the other cell X, but not the other way around. In a network of this
structure, the same patterns of periodic behaviour can be found as in the
simplified model: compare, for example, Fig. 3.5(d) with Fig. 3.2(c1), (c2).
Also the behaviour of simplified model III compares well with the patterns
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found in the network: for example, compare Fig. 3.7(a3) with Fig. 3.2(a3),
(ad), and Fig. 3.7(b3), (d) with Fig. 3.2(b1)-(b3). Thus, the interactions in
the simplified models are sufficient to capture the essentials of the behaviours
found in the network. Under point 2 of both simplified models II and III it
is described that with a strong enough connection strength, the oscillations
become smaller or disappear if the € value of the other cell is in the stable
region. This underlies the observation that when cells in a network become
strongly connected to many of their neighbouring cells, the oscillations be-
come smaller or disappear entirely if only a small proportion of the cells have
an ¢ value in the stable region. Also the fact that complex periodic behaviour
can occur especially when not all the cells become equally strongly connected
to their neighbours, can be understood from the fact that a large interaction
strength (a large Wxy in the simplified models) with a neighbouring cell that
happens to have an € value in the stable region would reduce the size of the
oscillations or let them disappear.

3.3.4 Generalization

In the previous sections we have considered neurite outgrowth, which is an
example of a slow activity-dependent process that attempts to stabilize neu-
ronal activity by adapting an intrinsic cellular property. Another example of
such a general process is postsynaptic receptor adaptation. After prolonged
exposure to its own neurotransmitter, a receptor can become desensitized
(e.g., Schwartz & Kandel, 1991). Also the number of receptors can be regu-
lated, with down-regulation following an increase, and up-regulation follow-
ing a decrease in electrical activity. For example in adult rat neocortex, an
increase in neuronal activity or agonist stimulation decreases the number of
AMPA receptors (a type of glutamate receptors) (Shaw and Lanius, 1992).
Such control of receptor number and sensitivity may be regarded as a form of
homeostasis of neuronal activity (Shaw & Lanius, 1992, also see Turrigiano
et al., 1994).
The following general model is used to study this process:

% = —X+(1- X)wx [sxxF(X) + sxy F(Y)]

% = Y +(1-Y)wy [syyF(Y) + syx F(X)]

i (3.17)
% = glex —X)

%"%‘i = gley - Y).

In this model the number of connections or synapses (sxx,syy,sxy and
sxy) is fixed, whereas wx (wy) is variable, e.g., representing the number
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or effectiveness of the receptors of X (Y). In general, wx (wy) represents
any intrinsic (postsynaptic) cellular property that determines the effective-
ness of all the cell’s incoming connections. Thus, the variable that controls
connection strength is not assigned to the interaction between two particular
cells, but to the cell itself, so that, for a given cell, the strength of all its
incoming connections is affected in the same way. The dynamics of wx (wy)
is such that neuronal activity is attempted to be maintained at a given level
(ex and ey, respectively). For simplicity we assume that sxx = syy, and
sxy = Syx, and transform Eq. (3.17) into

aXx
= = Xl X)W [ M) pR(E]]
dY
o5 = Y +-Y)Wy [F(Y)+pF(X)]
(3.18)
dWx
T glex — X)
aWy
T qley Y)a
where
Wx = wxsxx
Wy = wysyy
) e e (3.19)
SXX SYy
q = g8xx = gsyy-

Note, that compared with Eq. (3.13), Wxy and Wy x are missing. An
interpretation of Eq. (3.18) in terms of neurite outgrowth would be that
only the dendrites grow in an activity-dependent manner, while the axons
do not react to electrical activity, and thus remain constant. In analogy
to Eq. (3.13), X and Y can also be interpreted as representing the average
membrane potential of a population of X and ¥ cells, respectively.

In order to study the effect of input onto a cell, we will consider, in analogy
to Eq. (3.14), the following equation:

dX
o7 = X +1=-X)Wx[F(X)+1], (3.20)
where pF(Y) is -replaced by a constant input I. As with Eq. (3.14), in-
creasing I causes the turning points of the manifold of X to move towards
each other, so that the hysteresis loop becomes smaller and finally disappears
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Fig. 3.8 (a) External input makes the hysteresis loop of the slow manifold of X
(dX/dT = 0) smaller [see Eq. (3.20)]. Shown are the manifolds for I = 0, 0.01, 0.05
and 0.25. The meaning of the bold lines is as in Fig. 3.1(a). (b)-(d) Behaviour
of the model described by Eq. (3.18). (b) ey = 0.6, ex = 0.4, p = 0.1. X (bold
line) and Y against time. (c) ey = 0.62, ex = 0.5, p = 0.18. X (bold line) and
Y against time. (d) ey = 0.09, ex = 0.4, p = 0.05. Y (bold line) and X against
time.

[Fig. 3.8(a)]. The only difference with Fig. 3.4 is that all the manifolds start
in (Wx = 0, X = 0) because I has no effect when Wx = 0. Since the
effect of I on the form of the manifolds is the same as with Eq. (3.14), the
system described by Eq. (3.18) can be expected to show the entire range of
behaviours as described for Model III and Eq. (3.13), as indeed it does [for
examples see Fig. 3.8(b)-(d)]. The assumptions we made for sxx, syy, Sxv
and sy x are not not crucial for these results.
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3.4 Conclusions and Discussion

We have demonstrated that in a purely excitatory network composed of cells
with differing neurite outgrowth properties (i.e., the level of electrical activity
above which retraction occurs varies), the individual cells can exhibit com-
plex periodic behaviour, in both outgrowth and electrical activity, on the time
scale of neurite outgrowth. Even under these conditions, a transient over-
production of connectivity (overshoot: Van Ooyen & Van Pelt, 1994a; Van
Qoyen et al., 1995a) occurs, although in the final state the level of network
connectivity may oscillate to a variable extent. In the full network model,
the spatial distribution of the cell positions create connectivity patterns that
allow for such complex periodic behaviour to occur.

Inclusion of inhibitory cells can be expected to lead to even richer dynamic
properties. In Chapter 6 it is shown that, even if all cells have the same
intrinsic outgrowth properties, activity-dependent outgrowth in the presence
of inhibitory cells can lead, among other things, to an interesting type of slow
bursting oscillations.

Note that the periodic behaviour described in this paper is not the re-
sult of inhibition, of external drive or of transmission delays between cells
(e.g., Babloyantz & Destexhe, 1991; Destexhe & Gaspard, 1993; Houwel-
ing (et al., 1995). Essential for its occurrence are: (i) a cellular variable that
adapts slowly to electrical activity (electrical activity is here the fast variable)
whereby activity levels above a specified ‘setpoint’ lead to alterations in the
slow variable such that activity decreases, while activity levels below that
setpoint lead to the slow variable being altered such that activity increases;
(ii) different setpoints for different cells; (iii) a hysteresis relationship between
electrical activity and the slow variable. This last condition can thus also be
met in cases where hysteresis emerges as a property of only a large collection
of cells (see e.g., Rose & Siebler, 1993). In our model hysteresis is already
present in two inter-connected excitatory cells, and hinges upon (a) the firing
rate function having a threshold for transition to a higher firing level and (b)
low but non-zero values for sub-threshold membrane potentials. Conditions
(a) and (b) are met by, for example, a sigmoidal firing rate function [the exact
values of the parameters # and « of the firing rate function are not crucial;
also see Van Qoyen & Van Pelt (1994a) and Pakdaman et al., (1994)].

For the above mentioned analysis and qualitative results to be valid, it
is not necessary that the slow process be very much slower than the fast
process: for example, with ¢ = 0.1 (with a time constant of 1 for the neuronal
dynamics), analysis in terms of slow manifolds is still warranted. The precise
pattern, however, can be affected by ¢: a lower value than the one used, for
example, results in more ‘fast’ oscillations within the pattern of Fig. 3.7(b3).

Provided that conditions (i), (ii) and (iii) are met, similar results will be
obtained if the fast process (i.e., neuronal activity) is coupled, instead of to
neurite outgrowth, to any other slow cellular process that acts to stabilize
neuronal activity. For example, slow changes in ion channels that determine
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the firing properties of a cell [in the model there is also a hysteresis relation-
ship between electrical activity (X) and the firing threshold (8)], or changes
in neurotransmitter receptor sensitivity, as was examined in Section 3.3.4. A
similar situation is described in Carpenter & Grossberg (1983), where a model
of circadian rhythms is presented consisting of a four-dimensional fast-slow
process in which the fast membrane potentials (described by shunting equa-
tions) interact with slowly accumulating chemical transmitter pools. The
period of the rhythms is determined by the transmitter accumulation rate.
Since conditions (i), (ii) and (iii) for the generation of complex periodic
behaviour are rather general, one might expect to see such oscillations in
many different systems [for examples also see Murray (1989) and Rinzel &
Ermentrout (1989)]. In tissue cultures of hippocampal neurons, for exam-
ple, slow oscillations in neurite outgrowth have been observed (S. B. Kater,
personal communication). Another example is the variability in firing rate
on the order of several minutes, or even slower, which have been observed
in tissue cultures of cerebral cortex cells (Ramakers et al.,, 1990; Nuijtinck
et al., in preparation) as well as in vivo (e.g., Mirmiran & Corner, 1982).
These fluctuations are usually associated with relatively long-lasting tran-
sients of network activity (so-called slow waves, recorded as field potentials)
in the range of tens or hundreds of milliseconds, which alternate with peri-
ods of minimal activity (for references see Van Ooyen et al, 1992b). Such
patterns in which periods of increased network activity alternate with pe-
riods of minimal activity can - together with spontaneously firing cells to
trigger network activity- be generated by slowly adapting processes, such as
calcium-dependent potassium channels that act to hyperpolarize the cell after
repeated firing (Van Ooyen et al., 1992a).
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