Chapter 6

Effects of Inhibition on Neural
Network Development
Through Activity-Dependent
Neurite Outgrowth

C. van Oss & A. van Ooyen, J. Theor. Biol., submitted.

In this chapter, activity-dependent neurite outgrowth is studied in a sim-
ple two-cell model, containing one excitatory and one inhibitory cell. We
show that activity-dependent outgrowth in combination with the presence of
inhibition can account for bistability. The attractors, which can be both point
and limit cycle attractors, may be associated with ‘normal’ and ‘pathological’
end states of network development. A slight modification of the model makes
it also applicable to a range of other activity-dependent processes in neurons,
such as changes in the number or efficacy of receptors. The main results of
the previous model are also found in this modified model.

125

.-



126 Chapter 6

6.1 Introduction

During development, as neurons become assembled into functioning networks,
many processes that determine network structure and function are affected by
the neuron’s electrical activity (see Chapter 1). Intrinsically generated elec-
trical discharges and synaptic interactions are especially important in this
respect during the primary phases of network development (Corner, 1994).
As a result of such activity-dependent processes, a reciprocal influence or feed-
back loop becomes established between the development of neuronal form,
function and connectivity on the one hand, and network activity on the other
hand. A given network may generate activity patterns which modify the or-
ganization of the network, leading to altered activity patterns which could
further modify structural or functional characteristics, and so on. A devel-
oping network is thus a dynamic system in which the structure, number of
elements, and functional characteristics of the elements are variable, in part
being under the influence of the system’s own activity. The presence of such
feedback loops has implications not only for the emergence of network or-
ganization and function, but also for the functioning of the mature system:
processes that are involved in development often appear to remain opera-
tive in adulthood (for references see Chapter 1). In this paper, we address
the implications of one of these activity-dependent processes, namely neurite
outgrowth.

A number of studies have demonstrated that the neuron’s electrical activ-
ity affects, presumably via changes in intracellular calcium levels ([Ca?*];,),
the outgrowth of its neurites, with high levels of activity (resulting in high
[Ca?*);,) causing neurites to retract, whereas low levels of activity and, con-
sequently, low [Ca?T];, allow further outgrowth (Cohan & Kater, 1986; Matt-
son, 1988; Kater et al., 1990). From these studies, the realization is growing
that electrical activity is not only involved in information coding, but may
also play important roles in shaping neuronal form and network structure
(Mattson, 1988). By means of simulation models, we tried to make this more
explicit.

We previously demonstrated that such activity-dependent neurite out-
growth in a purely excitatory neural network model can, under a wide range
of conditions, give rise to a transient phase during development in which the
connectivity is larger than in the final, stable state (Van Ooyen & Van Pelt,
1994a). An essential condition for the occurrence of such an ‘overshoot’ is a
hysteresis relationship between network activity and connectivity, which in
the model is brought about by the firing threshold in the neuronal response
function. Overshoot phenomena with respect to many structural elements
(e.g., the number of synapses) constitute a widespread feature of nervous
system development, in vivo as well as in vitro (for references see Van Qoyen
& Van Pelt, 1994a).

We have also studied networks made up of both excitatory and inhibitory
cells (Van Ooyen et al., 1995) (throughout this paper, this model will be
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referred to as the ‘network model’), and in such mixed networks overshoot still
takes place. New is, however, that the ‘basin of attraction’ of the attractor
of the system is diminished as a consequence of inhibition. In other words,
whereas purely excitatory networks end up in the same attractor regardless
of initial conditions, mixed networks do not necessarily do so. In a mixed
network with a moderate level of inhibition and an initial average connection
strength that is larger than a critical value, connectivity will not be reduced
but, instead, will continue to increase (the studied network was not found to
end up in a second attractor, see Section 6.6).

A similar phenomenon has been observed in developing cultures of dissoci-
ated cortex cells with respect to the number of synapses. Cultures developing
under normal conditions show a transient overproduction of synapses (i.e.,
‘overshoot’), with an initial period of neurite outgrowth and synapse forma-
tion being followed by a period of substantial synapse elimination towards
a stable level (Van Huizen et al., 1985, 1987a; Van Huizen, 1986). In con-
trast, a developing culture that is chronically deprived of electrical activity
(thus resulting in enhanced neurite outgrowth with no subsequent elimina-
tion of synapses) for longer than a certain period, does not eliminate its
excess synapses when electrical activity is allowed to return (Van Huizen et
al., 1987b). This observation has been taken to indicate that there may exist
a ‘critical’, or ‘sensitive’, period after which electrically controlled pruning of
connections is no longer possible.

The aim of the present paper is to better understand the phenomenon
of such critical periods, and to pinpoint the interactions that may be im-
portant for its existence. To this end the network model (Van Ooyen et al.,
1995), which contains a large number of spatially distributed cells, is greatly
simplified. The first simplification is the exclusion of the spatial dimension.
Secondly, the number of neurons is reduced to two, where, since the presence
of inhibition was found to be crucial for the existence of critical periods in
the network model, one of them is taken to be inhibitory. A first attempt to
analyse this simplified model has been made in Van Qoyen et al., 1995. The
results suggested that the end state of the network is dependent on initial
conditions and that, therefore, the phenomenon of a critical period could ex-
ist in this simple model. This could not be tested explicitly, however, since
activity-dependent neurite outgrowth was not explicitly included. In this
paper, we therefore introduce activity-dependent neurite outgrowth to the
simplified model. For simplicity, at first only the excitatory cell is allowed
to adapt its neurites, whereas those of the inhibitory cell are held constant.
Focusing on the possible existence of multistability, we analyse the complete
dynamic behaviour generated by this model. In addition, we make a start at
analysing an extended model in which the neurites of both cells are variable.

Besides neurite outgrowth, many other processes that are important in
determining the structure and function of the nervous system are activity-
dependent. With a slight modification of the model, it also applies to a range
of other activity-dependent processes, such as changes in receptor number or
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efficacy. The main results of the previous models are also found in this model,
which underlines the generality of the findings.

Preliminary results of this study have been reported in Van Oss & Van
Ooyen (1995a).

6.2 The Model

The shunting model of (Grossberg, 1988) is used for describing neuronal
activity. Here the dimensionless equations (Carpenter & Grossberg, 1983;
Van Qoyen et al.,, 1995) are used. In this model, excitatory inputs drive the
membrane potential towards a finite maximum (or saturation potential, e.g.,
the Na* equilibrium potential), while inhibitory inputs drive the membrane
potential towards a finite minimum (e.g., the K™ equilibrium potential). The
general form of these equations is:

% = XA (I~ X)Wk F(X) = (H + X)Wy E(¥)
(6.1)
= Y+ -Y)WyxF(X) - (H+ Y)Wy F(Y),

where X represents the time averaged membrane potential of the excita-
tory cell, Y that of the inhibitory cell (X, ¥ in the range < —H,1 >),
Wxx, Wxy, Wyx and Wyy are the connection strengths of cell X to X,
Y to X, X toY and Y to Y, respectively (all W > 0). Parameter Wxx
can be interpreted as the connection strength between cell X and itself or,
alternatively, between two completely identical excitatory cells (which also
have the same initial conditions). For simplicity, we exclude mutual inhi-
bition (Wyy = 0) and assume that the connection between the excitatory
and inhibitory unit is symmetrical (Wy x = Wxy). This last assumption is
relaxed in Section 6.5. The output of the cells is their mean firing rate f,
which is a sigmoidal function of the membrane potential u:

1

F('u,) =] —1 +e(9"“)/ﬁ’ y

(6.2)
where a determines the steepness of the function, while # represents the
firing threshold. The low firing rate when the membrane potential is sub-
threshold may be considered as representing spontaneous activity, arising
from threshold or membrane potential fluctuations and synaptic noise.

An alternative interpretation of Eq. (6.1) is that X and Y represent the
average membrane potential of a population of excitatory and inhibitory
neurons, respectively (see Wilson & Cowan, 1972).

For modelling neurites we use the concept of a neuritic field with radius R,
as yet without distinguishing axons and dendrites (but see Section 6.5). The
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size of the neuritic fields of the cells is governed by the following equations
(Rx > 0 and Ry > 0):

dR - :

X = TR X)

o (6.3)
—a% = q*(e—b*R% -Y),

where Rx is the size of the neuritic field of cell X, Ry that of cell Y, g* is
the growth rate of Rx and Ry, b* determines the degree of saturation, and
€ determines the membrane potential at which dR,/dT = 0. The change in
size of the neuritic field of a cell thus depends on its membrane potential u: if
u < (e —b* R2), the cell's neuritic field will increase, whereas it will decrease
if u > (e — b* RZ). This is a phenomenological description of the empirical
results obtained by Kater et al, 1990 (see Section 6.1). If u = (e — b* R2),
the neuritic field size will not change. To prevent the neurites ever from
growing out indefinitely, the saturation term —b* RZ was added (without
this term, however, the model gives quite similar results: see Section 6.6).
If we interpret X and Y as representing the average membrane potential of
populations of cells, then Rx and Ry are the average neuritic field size of
the population of excitatory and inhibitory cells, respectively.

If a cell’s neuritic field increases, it is reasonable to assume that its connec-
tion strength with the other cells (both excitatory and inhibitory) increases.
For the connection strengths between the cells we have

Wxx = o(Rx)Sxx
(6.4)
Wxy = %(Rx,Ry)Sxy,

where ¢ and 1 can be interpreted as functions relating neuritic field sizes
with the number of connections (synapses) that can be made between cell
X and X, and between cell X and Y, respectively, while Sxx and Sxv
represent the synaptic strengths of these connections (Sxx > 0 and Sxy >
0). Since we are interested in a simple model that still captures the essentials
for generating the phenomena observed in the network model, we take Ry
to be constant (in Section 6.4 this constraint is relaxed) and, to calculate
dWx x /dT and dWxy /dT, we take simple functions ¢ and 9: @(Rx) =
1 (Rx,Ry) = aRx with a > 0. Using the chain rule thus yields

Wax e dRx
dT dT
(6.5)
dWoeyv' S dRx
T ST e

s
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Using Egs (6.1) and (6.3) yields

dx
- = ~X+(1-X)WF(X) - (H+X)pWF(Y)
© - oV =W (6.6)
dT
dWw
s q(e—bW2 -X),
where
W = Wxx
o Sxy _ Wxy
Sxx Wxx
(6.7)
g = aq"Sxx
b*
© T P

Throughout this paper, the model defined by Eq. (6.6) will be called the
‘simple model’. This model and those outlined in Sections 6.4 and 6.5 are
analysed using phase plane and bifurcation analysis, for which we used the
computer programs GRIND (De Boer, 1983) and LOCBIF (Khibnik et al.,
1992).

Qutgrowth of neurons is on a time scale of days, so that connectivity is
quasi-stationary on the time scale of membrane potential dynamics (i.e., g is
small). To avoid unnecessarily slowing down the simulations, g is chosen as
large as possible while maintaining the quasi-stationary approximation. We
use ¢ = 5-1072. In combination with an excitatory saturation potential of
1, we chose H = 0.1, since the (absolute) value of the inhibitory saturation
potential is often about ten times smaller (e.g., Hodgkin & Huxley, 1952).
As nominal values for the other parameters, we chose: § = 0.5, @ = 0.1, and
b =5-10"5, unless mentioned otherwise. The effect of other b and ¢ values
is discussed (see Section 6.6). The parameters € and p vary from 0 to 1; their
exact values are denoted in the figures.

6.3 Results

Since ¢ < 1, the dynamics of W is much slower than that of X and Y. Thus
W can be considered as a slowly varying parameter, with X and Y at quasi-
steady state on the time scale of W. Depending on W, X and Y can be either
in a stable equilibrium (steady activity level) or in a limit cycle (oscillatory
activity). Meanwhile, W may slowly change. Except for transient jumps, the
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Fig. 6.1 Parameter plane p vs. e. Within the area delineated by the two hori-
zontal dotted lines an oscillatory state for X and Y can exist for a fixed . The
continuous lines are fold lines, and the dashed lines are Hopf lines. Number and
stability of equilibrium points and limit cycles in each numbered region are de-
noted in Table 6.1. The grey regions are those where two attractors can exist (ie.,
bistability). For further details see text.

trajectories of the system will either follow (if X and Y are at equilibrium) or
circle around (if X and ¥ are in a limit cycle) the ‘slow manifold’, this being
the set of points defined by dX/dT = 0, dY/dT = 0. The intersections of the
slow manifold with the nullcline of W (which is the set of points defined by
dW/dT = 0) are the equilibrium points of the whole system (see Fig. 6.2). By
using the concept of a slow manifold, the dynamics of the model can easily
be displayed in the (W, X)- or (W, Y)-plane.

We are interested in the impact of the parameters e and p on the dynamic
behaviour. Parameter ¢ determines the membrane potential at which the
neuron neither extends nor retracts its neurites, while p stands for the relative
strength of the inhibitory connection, being Sxy /Sxx = Wxy /Wxx. By
means of bifurcation analysis it is possible to distinguish different regions in
the parameter plane (e, p) (see Fig. 6.1) and to characterize them in terms
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Region Stable eq. | Unstableeq. | L.C. 1 | L.C. 2 | L.C. 3

1 a 0
b | 1 0 0 0 +
¢ 0

2 a 0 1 1 0 0
b + +

3 il 0 0 0 0
4 a 0 3 1 0 0
b -+ +

5 a 0 0
b 1 2 0 + +
e 0 -

6 2 3 0 0 0
7 1 4 0 + -
8 0 1 0 0 +
9 2 1 0 0 0
10 2 1 0 0 -
i i 2 0 + .
12 a 2 1 0 0 -
oy 0

13 a 1 0 0 0 -
b | 0

Table 6.1 Number and stability of the equilibrium points in every region of the
parameter plane shown in Fig. 6.1. The regions are divided into subregions, which
have equal equilibrium points, but differ in the presence of limit cycle attractors.
‘L.C.1%: limit cycle attractor of type 1, showing relaxation oscillations; ‘L.C.2": limit
cycle attractor of type 2, showing bursting oscillations; ‘L.C.3’: limit cycle attractor
of type 3; ‘“4’: this type of limit cycle exists at some points in the parameter region;
‘-: the existence of this type of limit cycle cannot be excluded, but was not found;
‘0’: this type of limit cycle or equilibrium point does not exist in the parameter
region.

of number and stability of equilibrium points (Table 6.1). The plane can be
divided by fold and Hopf lines. A fold line consists of points at which a fold
bifurcation (= saddle-node bifurcation) occurs. Crossing such a line, due to a
small change in € or p, means that two equilibrium points appear or disappear.
A Hopf line consists of points at which a Hopf bifurcation occurs. Crossing
such a line indicates that the stability of an equilibrium point has changed,
and that stable or unstable limit cycles may appear or disappear. Since
other codimension 1 bifurcations do not occur in this system, the number
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and stability of equilibria at every point in the parameter plane is known
once all Hopf and fold lines are found. A collection of points bounded by
fold and Hopf lines is called a parameter region, which is homogeneous with
respect to the number and stability of equilibrium points (but not necessarily
so with respect to the existence of stable or unstable limit cycles). Table 6.1
gives an overview of all regions in the parameter plane of Fig. 6.1. In the
model, three types of limit cycles can exist; these will be explained in the
following sections. The existence of a specific type of limit cycle could not
always be excluded within a particular parameter region. In the following,
only the parameter regions showing the most interesting behaviour will be
described.

Parameter regions 1a, 2a and 3: One attractor

At low values of p, the behaviour of the model is qualitatively the same as that
of the model without inhibition. Fig. 6.2(a) shows the (W, X)-plane at p = 0.3
and € = 0.1. The slow manifold is S-shaped (‘hysteresis curve’), and there is
only one equilibrium point. The nullcline of W, and consequently the position
of the equilibrium point, is shifted vertically by varying e. This corresponds
to a walk through the parameter plane with constant p and varying e. In
parameter region 1 (0 < e < 0.12) there is only one stable equilibrium, which
is at the branch AB of the slow manifold. Region 2 is at intermediate € values
(0.12 < € < 0.54), for which there is one unstable equilibrium at branch BC,
which gives a stable limit cycle (‘relaxation oscillations’, see e.g., Edelstein-
Keshet, 1988), see Fig. 6.2(b)-(d). We will call this a ‘type 1’ limit cycle.
In region 3 (0.54 < € < 1) there is one stable equilibrium at branch CD. A
trajectory starting at W = 0 will first follow branch AB, jump to CD and
then approach the equilibrium point [Fig. 6.2(e)]. The trajectory therefore
shows a transient overproduction in W [overshoot, see Fig. 6.2(f)]. Overshoot
can occur if € > 0.5 and p < 0.42, thus in parameter regions 3, 5a, 5b, 6 and
T

Parameter regions 6, 9, 10 and 12: Two point attractors

When p is increased, the slow manifold changes shape (Fig. 6.3) due to a
cusp bifurcation at approximately p = 0.394 and € = 0.524 (see Fig. 6.1). In
parameter region 6, there are five equilibria, of which number 1 and 3 are
stable (point attractors, see Fig. 6.3), and 2, 4 and 5 are unstable (4 and 5
are not shown in Fig. 6.3). Two point attractors are also found in regions 9,
10 and 12.

Parameter regions 5b, 7 and 11: One point attractor, one limit cycle attractor
of type 2

In region 5 there are three equilibrium points, one stable and two unstable
(see Fig. 6.4(a); one unstable equilibrium point is not shown). In addition to
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Fig. 6.2 (a) Parameter region la. The S-shaped slow manifold and the W-
nullcline (nearly horizontal) in the (W, X)-plane. p = 0.3, € = 0.1. The bold lines
indicate stable equilibrium points with respect to X and ¥ (when W is regarded as
a parameter), and the thin lines unstable ones. The intersections of the manifold
with the W-nullcline are the equilibrium points of the system. (b) p = 0.3, e = 0.4.
The slow manifold (without showing stability) and the W-nullcline. The bold line
is & trajectory of a limit cycle of type 1. (c) Limit cycle attractor of (b) showing X
(bold line) and Y against time. (d) Limit cycle attractor of (b) showing W against
time. (e) p = 0.3, e = 0.6. The slow manifold (without showing stability) and the
W-nullcline. The bold line is a trajectory showing overshoot in W. (f) Time plot
of W of the trajectory in (e).
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Fig. 6.3 Parameter region 6. The slow manifold, which now consists of two
separate lines, and the W-nullcline (thin, nearly horizontal line) in the (W, X)-
plane. The meaning of the bold lines is as in Fig. 6.2(a). There are five equilibrium
points: 1 and 3 are stable and 2, 4 and 5 are unstable (equilibria 4 and 5 are not
shown). (a) p = 0.394, e = 0.56. (b) p = 0.4, ¢ = 0.56. At p = 0.394, a cusp
bifurcation has occurred.

the point attractor there is another attractor in the system, namely a stable
limit cycle [Fig. 6.4(b)-(d)]. This limit cycle can be viewed as a switching
between two states. Let us, for the moment, assume W to be a parameter
rather than a variable. At W < 17, X and Y will oscillate, whereas at
W > 17, X and Y are in a stable equilibrium. At W = 17, a fold bifurcation
occurs whereby a saddle and a stable node appear. At this point, the limit
cycle glues with the stable manifold of the newly appeared saddle node (i.e.,
a homoclinic bifurcation). A very slight increase in W causes the trajectory
to move via the unstable manifold of the saddle to the stable node. Let us
now consider the full system again, where changes in W are dependent on X:
dW/dT > 0 when X < (e—bW?), and dW/dT < 0 when X > (e—bW?2). In
the (W, X)-plane this means that W increases below, and decreases above the
W-nullcline. At W < 17, X and Y oscillate and, on average, X < (e—bW?),
as a result of which W will increase. At W > 17, on the other hand, X and
Y have a steady activity level whereby X > (e — b W?), so that W again
decreases. Thus, W pulls the system back and forth through the homoclinic
bifurcation. The limit cycle is stable, since W increases when W < 17, and
decreases when W > 17. This type of oscillations, which in this paper will be
denoted as a ‘type 2’ limit cycle, is known as ‘bursting oscillations’ (Rinzel
& Ermentrout, 1989).

The period of the limit cycle can be changed by varying e. A smaller
€ results in a longer period in region 2b and 11, and a shorter period in
the other regions (the phase with steady activity becomes shorter). Only in
region 2b and 11 is the dynamic behaviour of the type 2 limit cycle dependent




136 Chapter 6

X X
, @ . ®
v
5 ] 5
0 0 1
0 15 30 W 0 15 30 W
18
! © o
Y
5 X
W
o L ¥ I ¥ ¥ 17.5
0 Time 100 0 Time 100

Fig. 6.4 Parameter region 5b: p = 0.4, € = 0.5. (2) The slow manifold and
the W-nullcline (thin, nearly horizontal line) in the (W, X)-plane. The meaning
of the bold lines is as in Fig. 6.2(a). (b) The slow manifold (without showing
stability) and the W-nullcline in the (W, X)-plane. The bold lines are trajectories:
one, starting at W =0 and X =0, approaches the point attractor at low W; the
other one, starting at 7 = 15 and X = 0, approaches the limit cycle attractor
(type 2) at high W (see arrow). Starting at W = 15, X and Y oscillate while W
slowly increases until the oscillations ‘touch’ the fold of the slow manifold, at which
point there is no net increase in W anymore. At this point a homoclinic bifurcation
occurs. Note that, since the changes in W are much slower than those in X and
Y, no separate oscillations are visible in the figure. (c) Time plot of the limit cycle
attractor in (b) showing X (bold line) and ¥. (d) Time plot of the limit cycle
attractor in (b) showing W.

on ¢, the parameter determining the growth rate. With a smaller g (thus
slower dynamics of W), X and Y, which oscillate with a small amplitude,
can make more oscillations before becoming trapped by the stable manifold
of the saddle node [compare Fig. 6.5(b) and Fig. 6.5(d)]. In the other regions,
in contrast, the amplitude of the oscillations of X and ¥ is so large that they
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Fig. 6.5 Parameter region 2b: p = 0.7, ¢ = 0.14 (a) The slow manifold and the
W-nullcline (thin, nearly horizontal line) in the (W, X)-plane. The meaning of the
bold lines is as in Fig. 6.2(a). The rectangle indicates the part that is enlarged
in (b). (b) Enlargement of the slow manifold together with the trajectory of the
limit cycle attractor (type 2). Parameter ¢ = 0.1. (c¢) Time plot of the limit
cycle attractor in (b) showing X (bold line) and Y. (d) Same as in (b), but with
g = 0.005. (e) Time plot of the limit cycle attractor in (d) showing X (bold line)

and Y.
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Fig. 6.6 Parameter region 4b: p = 0.4, e = 0.4. (a) The slow manifold and the
W-nullcline (thin, nearly horizontal line) in the (W, X)-plane. The meaning of the
bold lines is as in Fig. 6.2(a). (b) The slow manifold (without showing stability) and
the W-nullcline in the (W, X)-plane. The bold lines are trajectories: one, starting
at W = 0 and X = 0, approaches the limit cycle attractor of type 1 (relaxation
oscillz:tions); the other one, starting at W = 15 and X = 0, approaches the limit
cycle attractor of type 2 at high W (see arrow), in the same way as described for
Fig. 6.4(b).

are immediately trapped by the stable manifold of the saddle node.

For the occurrence of a type 2 limit cycle, three conditions must be met:
(i) an oscillatory state for X and Y, which exists only for 0.39 < p < 0.77 (for
a fixed W); (ii) the existence of the homoclinic bifurcation; and (iii) a net
increase of W if W < Whomoclinic; and a net decrease if W > Whﬂmoclinim
where Whomoelinic 18 the value of W at which the homoclinic bifurcation
occurs. Because of these conditions, the type 2 limit cycle can exist only in
parameter regions 2b, 4b, 5b, 7 and 11, although not everywhere in these
regions, depending on whether or not condition (iii) is met. In all regions,
the type 2 limit cycle, if present, is the second attractor.

Parameter region 4b: Two limit cycle attractors, one of type 1 and one of
type 2

In region 4, there are three unstable equilibrium points (Fig. 6.6) and a stable
limit cycle of type 1. If the three conditions summed up in the previous
paragraph are met, there also exists a limit cycle attractor of type 2. The
two limit cycles show quite different dynamics. In the type 1 limit cycle,
X, Y and W oscillate very slowly with a high amplitude [Fig. 6.2(c), (d)].
In contrast, the type 2 limit cycle in this region consists of a single, fast
oscillation in X and Y, and a longer phase with high steady activity, while
W is virtually constant throughout the process [Fig. 6.4(c), (d)].
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Fig. 6.7 Parameter region 1b: p = 0.6, e = 0.12. (a) The slow manifold and the

-nullcline in the (W, X )-plane. The meaning of the bold lines is as in Fig. 6.2(a).
(b) The slow manifold (without showing stability) and the W-nullcline in the
(W, X)-plane. The bold line is the trajectory of the type 3 limit cycle attractor
(no initial transients are shown) (c) Time plot of the limit cycle attractor in (b)
showing X (bold line) and ¥; (d) Time plot of the limit cycle attractor in (b)
showing W.

Parameter region 1b: One point atiractor, one limit cycle attractor of type 3

In region 1 there is only one point attractor [see Fig. 6.7(a)]. At some places
there exists also a limit cycle attractor (which we will call a ‘type 3’ limit
cycle) [Fig. 6.7(b)-(d)]. This limit cycle, with fast oscillations in X and Y,
seems to be suspended at a certain value of W [Fig. 6.7(b)]. Intuitively,
we can understand its existence as follows. For the parameter values used
in Fig. 6.7, X and ¥ will oscillate when W > 7. For W not too large
X < (e—bW?2), on average, so that W will increase. However, at W = 50,
for instance, X > (e—bW?), on average, so that W will decrease. Somewhere
in between, therefore, there must be a value of W for which X, on average,
equals (€ — b W?), as a result of which no net increase or decrease in W will
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occur. Thus, a stable limit cycle exists, which shows oscillations with high
amplitude in X and ¥ and low amplitude in W. In mathematical terms, we
think that this limit cycle is born at a Hopf bifurcation on the Hopf line that
is the boundary between region 1b and 2b. We could not define the conditions
for the existence of the type 3 limit cycle as sharply as the conditions for the
type 2 limit cycle. It is found in regions 1b, 2b, 4b, 5b, 8, and 11. Note that
the maximum number of attractors found in the whole parameter plane (¢, p)
is two.

6.3.1 Summary

In quite a number of parameter regions, two attractors exist (i.e., bistability),
which can be either points attractors or limit cycles. The limit cycles can
be classified into three types: one with regular, slow oscillations (type 1 or
relaxation oscillations); one with regular, fast oscillations (type 3); and one
with intermittent behaviour (type 2 or bursting oscillations): a relatively
long phase with a steady activity level, alternating either with a single, fast
oscillation or with a sequence of fast oscillations (see Figs 6.4 and 6.5). In
most cases there is a point attractor (A) at a low value of W (and intermediate
values of X and Y) and another attractor (B) at a high value of W (see
Figs 6.3, 6.4, 6.6 and 6.7) Attractor B can be either a point attractor or a
limit cycle of type 2 or 3.

The initial conditions of the network determine which of these attractors
will be reached. Thus, a trajectory starting at W = 0 (which is a normal ini-
tial condition for developing neurons) will approach attractor A in most cases.
A trajectory starting at high enough values of W, however, will approach at-
tractor B. At a value of W in between those of the two attractors, there must
exist an unstable node or unstable limit cycle, forming the boundary between
the basins of attraction of both attractors. For example, let us consider a
parameter setting with p < 0.77, so hysteresis is present [see Fig. 6.4(a),
(b)]. Starting at W = 0, the trajectory moves along the lower branch of the
S-shaped slow manifold and then jumps to the upper branch. This transition
is the onset of high electrical activity. Let us call the value of W at which
this transition occurs Wiransition, and the value of W at which the unstable
node or limit cycle exists Weriticar- Then, starting at W = 0, attractor A is
reached if Wiransition < Weritical, and attractor B if Wiransition > Weriticar-
In general, the higher p and e, the lower Wi riticar, while Wiransition 2ppears
to be almost independent of p (and independent of €). For higher values of p
(p > 0.43) this means that for most e values even the initial condition W = 0
is in the basin of attraction of B (see Fig. 6.8).

If electrical activity is chronically blocked in the model (analogous to the
‘critical’ period experiment described in Section 6.1) until W has become
higher than Wi,iticar, the system will approach attractor B rather than A
when electrical activity is allowed to return.

Switching from one attractor to the other can be accomplished by chang-
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Fig. 6.8 For e.g., p = 0.42, e = 0.5, the initial condition (W =0, X =0) is in
the basin of attraction of attractor B (here a limit cycle of type 2, see arrow). (a)
The slow manifold and the W-nullcline in the (W, X)-plane. The meaning of the
bold lines is as in Fig. 6.2(a). (b) The slow manifold (without showing stability)
and the W-nullcline in the (W, X)-plane. The bold line is a trajectory starting at
W =0and X = 0; X and Y oscillate while W slowly increases until the oscillations
‘touch’ the fold of the slow manifold, at which point there is no net change in W
anymore. Note that, since the changes in W are much slower than those in X and
Y, no separate oscillations are visible in the figure.

ing either W, X or Y. To switch from attractor A to B we need either to
increase W, to chronically increase Y, or to chronically decrease X. The
opposite changes are required to switch from B to A.

Parameter g determines the time scale of the slow connectivity changes.
Changing the value of ¢ over a range of [1-107°, 2] does not alter the stability
nor the location of the attractors. However, as mentioned earlier, it can
influence the dynamic behaviour of the type 2 limit cycle in parameter regions
2b and 11. Furthermore, if g is increased, the amplitude of the oscillations
in W of the type 3 limit cycle increases.

6.4 Neurite Outgrowth of Both Cell X and Cell Y

In the previous model, the connection strengths between the cells (ie., W
and pW) are modulated by the electrical activity of cell X only, as Ry was
taken to be constant. This simplified model can already yield the behaviour
as observed in the network model (see Section 6.1 and Van Ooyen et al.,
1995). Nevertheless, it would be interesting to see whether the behaviour of
the model is affected when Ry too is modulated by electrical activity (as in
the network model). We therefore made a start at the analysis of a model in
which Ry is not constant, so that Wxy becomes a function of both Rx and
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Ry. Again taking simple functions for ¢ and 1, we have

Wxx = a*RxSxx
6.8)
o BB (
WXY = a %Sxy,
which can be rewritten into
WXX = G.RX
Rx +Ry (6.9)
Wxy = ap —
where
a = a*'Sxx
= Sxy (6.10)
Sxx

Here ¥(Ryx, Ry) is simply a linear function of the neuritic field sizes. Stud-
ies in comparable models have indicated that the results are not much af-
fected by the actual choice of 1(Rx,Ry) and ¢(Rx) (e.g., ¢(Rx) ~ R%
and ¢(Rx,Ry) ~ RxRy ) (Van Ooyen & Van Pelt, 1995). The full model
consists of Egs (6.1), (6.3) and (6.9), and will be called the ‘extended model’.
Again, we take Wyy = 0 and Wy x = Wxy. The parameter values used are:
#=050=01H=014¢" =510"3b*=5-10"% a = 1. The parameters
p and € vary from 0 to 1, their exact values are denoted in the figures.
Preliminary results show that most of the behaviour found in the simple
model is also present in the extended model. For low values of p (p < 0.25),
a stable equilibrium point exists for e < 0.12, just as in parameter region 1 of
the simple model. At intermediate values of € (0.12 < € < 0.5), a limit cycle
of type 1 exists [see Fig. 6.9; compare Fig. 6.2(c), (d)]. If € > 0.5, there is
again a stable equilibrium, and a trajectory starting at Rx = Ry = 0 shows
overshoot with respect to Wy x and Wxy (region 3 in the simple model).
Bistability is found for various parameter settings. In all these cases, there
is a point attractor where Wxx and Wiy are smaller than 10 (attractor
A), and a limit cycle attractor, where X, Y, Wxx and Wxy oscillate with
high amplitude (attractor B). Which of these attractors will be approached
is highly dependent on the initial conditions, as shown in Fig. 6.10: a trajec-
tory starting at Rx = Ry = 0 approaches the point attractor [Fig. 6.10(a),
(b)], whereas one starting at 15 < Ry = Ry < 28 approaches the limit cycle
attractor [Fig. 6.10(c), (d)]. New compared to the simple model is that trajec-
tories starting at even higher connectivity values (Rx = Ry > 28) approach
the point attractor once again. Obviously, the asymptotic behaviour of the
extended model is much more difficult to predict from the initial conditions
than the asymptotic behaviour in the simple model.

!
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Fig. 6.9 Time plots of a type 1 limit cycle attractor in the extended model.
p=0.3, e=04. (a) X (bold line) and Y. (b) Wxx and Wxy.

Also, the transient behaviour in the extended model is more complex
than in the simple model. The trajectories often show transient oscillations
before ending up in an attractor. Such behaviour is also found in the network
model (Van Ooyen et al., 1995) but is scarcely present in the simple model.
In addition, the limit cycle attractor has much more complex dynamics than
any limit cycle in the simple model [Fig. 6.10(c)].

Similar to the simple model is that for low values of p (p < 0.43) and for
most values of €, trajectories starting at Ry = Ry = 0 approach attractor
A, whereas for high values of p they approach attractor B.

6.5 Generalization

In the previous sections we have considered neurite outgrowth as an exam-
ple of a relatively slow, activity-dependent process that attempts to stabilize
neuronal activity by adapting a cellular property. Another example of such
a general process is postsynaptic receptor adaptation. After prolonged expo-
sure to its neurotransmitter a receptor may become desensitized (Schwartz
& Kandel, 1991). Also the number of receptors can be regulated, with down-
regulation generally following an increase, and up-regulation following a de-
crease in electrical activity. In the following, we describe a two-cell model, in
which the receptor number /sensitivity of the postsynaptic cell adapts to the
cell’s membrane potential.
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Fig. 6.10 Sensitivity to initial conditions in the extended model. p = 0.41,¢ =
0.54. For initial condition X =Y = Rx = Ry = 0, the trajectory approaches the
point attractor: (a) X (bold line) and Y; (b) Wxx and Wxy. For initial condition
X =Y =0; Rx = Ry = 15.0, the trajectory approaches the limit cycle attractor:
(¢) X (bold line) and Y; (d) Wxx and Wxy.

For the connection strengths between the cells we have

Wxx = rxsxx = Wx
Wxy = rxsxy = pWx (6.11)
Wyx = ryvsyx = Wy,

where p = sxy/sxx; Sxx,Sxy and syx are constants representing the
number of connections (or presynaptic connection strength) from cell X to
X,Y to X and X to Y, respectively (all s > 0); rx and ry are variable, e.g.,
representing the effectiveness of the receptors of X and Y, respectively (rx >
0 and r, > 0). In general, rx and ry represent any intrinsic (postsynaptic)
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cellular property that determines the effectiveness of all the cell’s incoming
connections. Thus, the strength of all the connections onto a cell is regulated
by the postsynaptic cell only. Note that in contrast with the previous two
models, Wxy # Wyx [see Egs (6.1) and (6.6)]. Analogous to the models
describing neurite outgrowth, the dynamics of ry and Ty are given by

d

G = Cl-rrk-X)

. (6.12)
G * *

d_;:' =g (E =b 'f'%/ oud Y):

where ¢* determines the rate of change in rx and ry, and b* the degree of
saturation. As in Eq. (6.3), the term —b*r? prevents r from ever increasing
indefinitely. Note that in Eq. (6.11) we took the same variable, rx, for the
receptors in the excitatory and inhibitory connections, so that the excitatory
cell changes the strength of its incoming excitatory connection (Wx) in the
same way as the strength of its incoming inhibitory connection (pWx). The
assumption is that the receptors of both the inhibitory neurotransmitter (e.g.,
GABA) and the excitatory neurotransmitter (e.g., glutamate) increase their
efficacy at low X, and decrease it at high X. Indeed, the number of AMPA
receptors (a glutamate receptor sub-type) has been found to decrease as a
result of increased neuronal activity (Shaw & Lanius, 1992). Also a decreased
GABA receptor function due to activity-dependent Ca2+ influx has been
found (Stelzer & Shi, 1994). Conversely, the efficacy of both GABA and
glutamate receptors have been shown to increase as a result of chronically
blocking electrical activity (Ramakers et al., 1994).

In analogy with Eq. (6.6), we have studied the case in which 7y is constant.
Thus, the full model becomes [combining Eqs (6.11) and (6.12)]

dX
77 = ~X+Q-X)WxF(X)~ (H+X)pWxF(Y)
e - (1-Y)WyF(X) (6.13)
dT
dW-
where
g = (¢'sxx
* (6.14)
b = !

Skx
This model will be referred to as the ‘receptor model’. An interpretation of
Eq. (6.13) in terms of neurite outgrowth would be that only the dendrites
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Fig. 6.11 Bistability in the receptor model. p = 0.35, ¢ = 0.2 and Wy = 8 (a)
The slow manifold and the W-nullcline (thin, nearly horizontal line) in the (W, X)-
plane. The meaning of the bold lines is as in Fig. 6.2(a). (b) The slow manifold
(without showing stability) and the W-nullcline in the (W, X)-plane. The bold line
is the trajectory of the type 3 limit cycle attractor (no initial transients are shown)
(c) Time plot of the limit cycle attractor in (b) showing X (bold line) and Y; (c)
Time plot of the limit cycle attractor in (b) showing W.

of the excitatory cell grow out in an activity-dependent manner, while the
axons do not react to electrical activity, and thus remain at a certain size.
The parameter values used are the same as those in the model defined by
Eqg. (6.6). Although the shape of the slow manifold is different from that in
the simple model, the dynamic behaviour is still similar. Bistability can be
found, with a point attractor at a low value of W, and a limit cycle attractor
of type 3 at a higher value of W (Fig. 6.11). A trajectory from the initial
condition W = 0 approaches the point attractor, whereas a trajectory from
an initial condition W > 8.0 approaches the limit cycle attractor. In analogy
with the extended model, we expect that multistability will still be present
if Wy too is made activity-dependent.
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6.6 Discussion

In this paper we have shown that a simple, activity-dependent neurite out-
growth rule, in combination with inhibition, can generate extremely rich
dynamic behaviour. The models which we used were very much simplified:
in our ‘simple model’ [Eq. (6.6)], two cells were considered, of which only
the excitatory cell could adapt its neurites to the level of electrical activity.
This enabled us to systematically study the complete repertoire of dynamic
behaviour. Despite the simplifications, this model appears to capture the
essential interactions necessary for generating two important properties of
the much more complicated ‘network model’ (see Section 6.1 and Van Ooyen
et al., 1995). These properties of the network model are (i) overshoot with
respect to connectivity, and (ii) the ‘normal’ attractor at low connectivity
is not approached under all initial conditions; more specifically, if the initial
connection strength exceeds a critical value, connectivity will not decrease,
but instead increases still further.

In the network model, in contrast to the simple model, an attractor at high
connectivity has not been found: the connectivity just continues to increase
(Van Ooyen et al., 1995). The specific description of neuritic fields as circles
in the network model may account for this difference, since the equivalence
between both models is worse at high connectivity. In addition, the equation
for the outgrowth of neuritic fields in the network model does not contain a
saturation term (which is, of course, biologically implausible). Introducing
a saturation term would obviously create an attractor at high connectivity,
since neuritic fields can then no longer grow out without bound (in the simple
model such an attractor occurs also without a saturation term, see below).

The most important properties of the simple model (namely bistability
along with point and limit cycle attractors) are retained in the model with
neurite adaptation of both the excitatory and inhibitory cell (the ‘extended
model’), as well as in the modified model (‘receptor model’). With the latter
model a new range of activity-dependent processes could be described. These
are processes whereby a postsynaptic cellular property affecting the efficacy
of the incoming connections, is modulated by the cell’s own level of electrical
activity (an example of such a process is postsynaptic receptor adaptation).
What all these models have in common, is that a neuron attempts to reach
and maintain a given level of its electrical activity (‘homeostasis’), in such
a way that the adaptational changes in the connections from the inhibitory
and excitatory units to this neuron are somehow coupled. Thus, for example,
when a neuron increases the size of its neurites because the level of activity
is too low, more input will be received from both excitatory and inhibitory
cells. This seems biologically plausible. In the case of uniform changes in
receptor sensitivity, both glutamate receptors and GABA receptors become
more sensitive. This has indeed been reported in a number of studies on
receptor function (see Section 6.5). (Note, that these homeostatic processes
are different from the Hebbian principle, in that the latter acts to modify
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electrical activity by increasing the connection strength between two neurons
when they are simultaneously active.)

To investigate whether saturation is essential for our results, we removed
the saturation terms in Eqs (6.3), (6.6), (6.12) and (6.13). Limit cycles of
type 1, 2 and 3 are still found. Without saturation, there is only one attractor
in some parameter regions. Either this attractor is approached, or the con-
nection strength increases indefinitely. In various other parameter regions,
however, the two attractors are still present. In any case, the attractor that
is reached when the system starts at low connectivity, will not be reached
when the initial connectivity exceeds a critical value. Thus saturation is not
essential for this phenomenon.

Since our aim in this study was not to investigate the implications of
saturation per se, the effect of different b values was not investigated system-
atically. Small changes in b do not affect the results, but if b is of the order
1072, the results can become different. For example, at b= 3-10"2, p = 0
and e = 0.7, the W-nullcline intersects the slow manifold three times. This
will give two stable equilibrium points, whereas for lower b there exists only
one equilibrium point.

6.6.1 Comparison with Empirical Data

In comparing the model results with empirical findings, one should keep in
mind that the model results are not much affected by changes in g, the
parameter determining the rate of change of the adaptational process (e.g.,
neurite outgrowth or receptor sensitivity). The activity-dependent process
implemented in the model could thus stand for a range of such processes
that may operate on different time scales. In this discussion, we will consider
activity-dependent processes on a time scale of days or weeks, and those
on a time scale of hours. They include developmental processes as well as
processes operating in adulthood. In comparing the model with experiments,
one should further realize that individual action potentials are not modelled
but, rather, firing rates (and, therefore, time averaged membrane potentials).
A high value of X [and, consequently, F(X)] stands for a high firing rate of
the excitatory cell over a certain period of time. A steady activity level
represents a firing rate that does not alter significantly over time, which does
not necessarily imply that the neurons fire regularly. Thus, an oscillation of
type 2 as shown in Fig. 6.5(c) consists of a short phase during which many
action potentials are generated (‘bursts’) and a longer quiescent phase. An
oscillation as in Fig. 6.5(e) consists of a long quiescent phase and a phase
during which bursts are separated by very short relative silent intervals.

‘Critical’ period

When electrical activity is chronically blocked, developing cultures of dissoci-
ated cerebral cortex cells show enhanced neurite outgrowth and a persistence
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of a high density of synapses (Van Huizen & Romijn, 1987). If then placed
in control medium, the electrical activity rapidly returns, although there is
no subsequent elimination of the excess synapses (Van Huizen et al., 1987b).

These results have been taken as suggestive that a ‘critical’, or ‘sensitive’,
period exists after which electrically controlled elimination of synapses is no
longer possible (also see Section 6.1). Although the intrinsic properties of
the cells in the model do not change over time (as they might well do in the
living system), the interactions between excitation, inhibition and outgrowth
are nevertheless capable of generating similar phenomena. In the simple
model, trajectories starting at the normal initial condition W = 0 end up
(if the relative strength of the inhibitory connection (p) is not too high) in
the attractor at low connectivity (attractor A). Blocking electrical activity
for longer than a certain period, so that the connectivity W becomes higher
than a critical value, causes the system to end up in the attractor at high
connectivity (attractor B) when electrical activity is allowed to return.

In the above mentioned experiments with dissociated cortex cells, ab-
normal or ‘pathological’ conditions (such as chronically blocking electrical
activity) lead to a persistent state with a high density of synapses. In the
model this state corresponds to attractor B, which suggests that attractor
A represents the end state of a ‘normally’ developed network, whereas at-
tractor B would stand for that of a ‘pathologically’ developed network. This
interpretation is further supported by comparing the activity patterns in the
attractors with those found in culture. Cells whose electrical activity has
been blocked during development have significantly altered activity patterns
in comparison with normally developed cells, the main difference being the
enhanced ‘bursting’ pattern of the former (Corner & Ramakers, 1992). This
supports the pathological nature of attractor B, the activity pattern of which
is indeed burst-like in some parameter regions.

Balance of excitation/inhibition

In all models, switching from attractor A to B can be accomplished either by
increasing W (or Rx) or Y, or, alternatively, by decreasing X. The switch
from B to A requires one of the opposite modifications. In the receptor model,
this switch would be relatively fast, since changes in receptor sensitivity can
take place on a time scale from minutes to hours. The model may also
have relevance, therefore, for phenomena that occur on that time scale, for
example epilepsy. An epileptic seizure may be viewed as a sudden switch from
one state of the network to another (e.g., Lopes da Silva et al., 1994). If we
maintain our interpretation of A being a ‘normal’, and B a ‘pathological’ state
of the network, a switch from A to B might represent an epileptic seizure.
Interestingly, it is not a lack of inhibitory activity in this case that makes
possible the seizure, but rather an excess. A recovery from the attack, i.e., a
switch from B to A, would be attained by enhancing excitatory activity. This
as a result of the neuronal adaptational processes taking place in response
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to electrical activity, which underlines the relevance of such processes for
understanding epilepsy.

An important parameter in the nervous system is the balance between
excitation and inhibition. Roughly defined, this is the ratio of excitatory
to inhibitory elements (abbreviated as E/T), which includes the total num-
ber of excitatory and inhibitory cells, and the number and strength of their
synapses. In the models, a high p corresponds to a low E/I. For all models,
it holds that for a high p, a trajectory starting at W = 0 will reach attractor
B. Thus, a network developing under conditions of relatively high inhibition
with, for the rest, normal conditions will end up in the ‘pathological’ state
with oscillatory activity. In contrast, a low level of inhibition during the ini-
tial stage of development enables the system to move to the normal state.
Interestingly in this regard is that during the development of the nervous
system, the normally inhibitory neurotransmitter GABA initially works in
an excitatory fashion (Cherubini et al., 1991). One could thus hypothesize
that this is so in order to reduce the risk of pathological development.

A number of recent experiments are in agreement with the above. In-
duced hypoxic-ischemic encephalopathy (HIE, i.e., brain damage a result of
lack of oxygen) in rat pups can lead to permanent epileptiform activity later
on in adulthood (Romijn et al., 1994a). HIE may result in an unstable cor-
tical network generating abnormal oscillations in electrical activity (of both
excitatory and inhibitory cells) which can be amplified and propagated as
true epileptic discharges (Romijn et al., 1994b). Contrary to the authors’ ex-
pectations, such epileptiform activity was not the result of a preferential loss
of inhibitory elements following HIE, i.e., GABAergic cell bodies (Romijn
et al., 1992) or GABAergic nerve endings (Romijn et al., 1993) in the dam-
aged cerebral cortex. In fact the data show that there was a preferential
survival of GABAergic nerve endings (an effect that was directly propor-
tional to the severity of the incurred damage) and a higher proportion of
GABA-immunoreactive neurons in the damaged areas. In interpreting these
experiments with respect to the model, it is unimportant whether or not one
assumes the system already to be in attractor A before HIE is induced, or still
developing towards either attractor A or B. A higher p, as possibly induced
by HIE, increases the size of the basin of attraction of B, so that: (i) when
the system is still developing, the system is more likely to end up in B; or (ii)
if the system is already in A, the decrease in electrical activity following HIE
(e.g., Duffy & Plum, 1981), and the subsequent adaptational process, could
switch the system to B. Since attractor B is at a higher connectivity W (but,
of course, at the same p, since this is not a variable in the simple model)
a prediction of the model is that in rats in which HIE has been induced,
the total number of excitatory and inhibitory elements in adulthood will be
larger than in control rats.
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