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INTRODUCTION

The two methods described in this chapter focus on the development of neuronal geometry
and interneuronal connectivity. The first model for dendritic geometry is based on a stochastic
description of elongation and branching during neurite outgrowth. This model allows the user
to generate random trees by means of (Monte Carlo) computer simulations. Using optimized
parameters for particular neuron types, the geometrical properties of these modeled trees can
be made to correspond with those of the empirically observed dendrites. The second model
for the development of nerve connections describes competition for neurotrophic factors. This
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model is formulated in terms of differential equations which can be studied analytically using
well-known tools for nonlinear system analysis.

7.1 MODELING DENDRITIC GEOMETRY

Interest in the geometry of dendritic branching patterns stems from a variety of reasons.
Anatomists are interested in the morphological characterization and differences among neu-
ronal classes as well as in the morphological variations within these classes. Developmental
neuroscientists seek to discover the rules of development and the mechanisms by which neu-
rons attain their final morphological appearence. Physiologists are interested in how den-
dritic morphology is involved in synaptic connectivity within neuronal networks, and in the
integration and processing of postsynaptic potentials. Computer scientists are interested in
algorithms for generating tree structures. The enormous amount of structural and functional
variation with which nature confronts us is a major challenge providing strong motivation
to search for ’fundamental rules’ or minimal parsimonious descriptions of architecture, de-
velopment and function. Modeling the geometry of dendritic branching patterns can provide
answers to a variety of morphological, physiological and developmental questions and a vari-
ety of approaches have been developed. In these modeling approaches, a distinction can be
made between reconstruction and growth models.

Reconstruction models use the abstracted geometrical properties of a set of observed trees,
and provide algorithms for randomly generating trees with identical statistical geometrical
properties. A typical example is given by the work of Burke et al. [1], who developed a
parsimonious description on the basis of empirically obtained distribution functions for the
length and diameters of dendritic branches and for the diameter relations at bifurcation
points. Random dendrites are generated by a repeated process of random sampling of these
distributions in order to decide whether or not a traced neurite should branch, and for
obtaining the diameters of the daughter branches. The modeled dendrites obtained in this
way conform to the original distribution functions of shape characteristics. An important
assumption in this approach is that the sampled shape properties are independent from each
other. Hillman [2] emphasized the statistical correlation of segment diameters across branch
points and their relation to segment lengths as fundamental parameters of neuronal shape.
Tamori [3] postulated a principle of least effective volume in deriving equations for dendritic
branch angles. A sophisticated implementation of the reconstruction approaches by Hillman,
Tamori and Burke has recently been developed by Ascoli et al. [4] in L-neuron, a modeling
tool for the efficient generation and parsimonious description of dendritic morphology (URL:
http://www.krasnow.gmu.edu/L-neuron/index.html). This modeling tool implements local
and recursive stochastic and statistical rules into the formalism of L-systems. Kliemann [5]
followed a different approach by considering all the segments at a given centrifugal order
as individuals of the same generation, which may or may not give rise to individuals in
a subsequent generation (by producing a bifurcation point with two daughter segments).
Mathematically, such a dendritic reconstruction can be described by a Galton-Watson process,
based on empirically obtained splitting probabilities for defining per generation whether a
segment will be a terminal or an intermediate one. Applications of this method to dendrites
grown in vitro can be found in e.g., [6].
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Growth models, in contrast, aim at revealing rules of neuronal growth in relation to the
geometrical properties of the trees emerging from these rules. The outgrowth of neurons
proceeds by the dynamic behavior of growth cones, specialized structures at the tips of
outgrowing neurites which mediate neuritic elongation and branching (e.g., [7]). Mature
neurons have attained their morphological features as result of this process. Growth models
include these processes of elongation and branching. Several implementations have been
studied, differing in the level of detail of the mechanisms involved. Topological growth models
focus on the branching process only and ignore all metrical aspects of dendrites. They
have shown how the probability of occurrence of topologically different tree types depends
on the rules for outgrowth. These rules include, for instance, (1) growth by sequential or
synchronous branching and (2) random selection of segments participating in the branching
process, based on uniform or order-and type-dependent branching probabilities. Examples of
such topological approaches are in [8, 9, 10] and in [11] for a review. Metrical growth models
include rules for both branching and elongation of segments. These models allow the study of
both metrical and topological properties of the generated dendrites, in relation to the growth
assumptions, and have been developed by e.g., [12, 13, 14, 11].

The studies reviewed above concern phenomenological approaches in the sense that both the
reconstruction and the growth models are based on simple probabilistic schemes, still aiming
at the reproduction of the empirically obtained geometrical characteristics. A point of dis-
tinction is that the growth models are based on a developmental process in time and as such
are able to include mechanisms that depend on time, and on the growing tree itself, such
as its size. Reconstruction models do not include this dimension, and the underlying prob-
abilistic schemes are based on empirical correlation and distribution functions of the shape
parameters of particular sets of trees. Growth models should, in principle, be able to describe
groups of trees, reconstructed at different time points during development, using the same
set of parameters. Reconstruction models, however, may need different sets of optimized
parameter values for each age groups. Additional to these phenomenological approaches,
models have been and are being developed which include more detailed intracellular and
local environmental mechanisms and processes in dendritic growth models. Such biophysi-
cal and biochemical processes concern, for instance, the polymerization of the intracellular
cytoskeleton [15]) and neuritic tension and lateral inhibition (e.g., [14]).

The growth model described in this chapter includes branching and elongation as stochastic
processes. The stochasticity assumption is based on the notion that the actual behavior of
growth cones, mediating elongation and branching, is subject to so many intracellular and
extracellular mechanisms that a probabilistic description is appropriate. The stochasticity
assumption, thus, does not imply that the processes involved are stochastic by themselves, but
only that their outcome can be described as such. The model has a modular structure, evolved
in the course of time by separately studying the branching process (a) with respect to the
choices of the segments at which branching events occur, (b) with respect to the time pattern
of the branching events, and (c) by finally including the elongation of the segments. Each
phase was validated by comparison with specific empirical findings. The modular structure
of the model facilitates the optimization of the model parameters, which will be illustrated in
this chapter. The model allows the generation of random dendritic trees, and it will be shown
how these trees conform in their geometrical properties to empirical observations. This will
be illustrated for a set of rat cortical pyramidal cell basal dendrites and for a small set of
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three cerebellar Purkinje cell dendritic trees from the guinea pig.

7.1.1 Geometry of dendritic trees

Typical shape characteristics of dendritic trees are: the number of terminal tips (degree) or
branch points; the lengths and diameters of the segments between these branch points and
tips; and the connectivity pattern of the segments (topological structure). A distinction is
made between terminal segments (ending in tips) and intermediate segments (ending in a
branch point) (Fig. 7.1). Related shape properties are path lengths (total length of the path
from the dendritic root to a branch point or terminal tip) and the number of segments at
a particular centrifugal order. The centrifugal order of a segment is equal to the number of
branch points on the path from the dendritic root up to the segment, thus indicating the
position of the segment in the tree. The embedding of the segments in 3D space and their
irregular shapes, although prominent features of dendritic trees, are not dealt with in this
chapter. The topological asymmetry of a given tree αn with n terminal segments will be
quantified by means of the tree asymmetry index At defined as

At(α
n) = 1

n−1

∑n−1
j=1 Ap(rj, sj),

being the mean value of all the n− 1 partition asymmetries Ap(rj, sj) in the tree. Partition
asymmetries indicate, at each of the n − 1 bifurcation points, the relative difference in the
number of bifurcation points rj − 1 and sj − 1 in the two subtrees emerging from the jth
bifurcation point. [11] The partition asymmetry Ap at a bifurcation is defined as Ap(r, s) =
|r−s|/(r+s−2) for r+s > 2, with r and s denoting the number of terminal segments in the
two subtrees. Ap(1, 1) = 0 by definition. Note that a binary tree with n terminal segments
has n− 1 bifurcation points. The elements of a tree are further illustrated in Fig. 7.1.
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Figure 7.1 (A) Elements of a topological tree, with a distinction of branch points, terminal tips and
root, intermediate and terminal segments. Segments are labeled according to (B) the number of tips in their
subtrees (degree) and (C) their distance from the root (centrifugal order).

7.1.2 Dendritic growth model - assumptions

Basic actions in the growth model are elongation and branching of segments, assumed to be
independent stochastic processes in time. At each branching event a bifurcation is formed
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at the tip of a terminal segment, from which two new daughter terminal segments emerge.
Elongation is assumed to occur at terminal segments only. The branching probability of a
terminal tip is assumed to depend on the momentary number of tips in the growing tree and
on its position in the tree. The branching process results in a proliferation of tips and this
process fully determines the final variation among dendritic trees with respect to the number
of terminal segments. The branching parameters can be derived from the shape of empirical
terminal segment number distributions. The topological structure of a fully grown dendrite is
determined by the sequence of particular segments at which branching occurs. The segment
lengths are determined both by the elongation rates of the segments and by the elapsed time
between successive branching events. Segment length distributions can therefore only be
studied once the branching process has been optimized. No developmental rules have been
incorporated for the diameter of segments. Rather, these diameters will be assigned to the
segments once the skeleton tree has been grown.

7.1.3 Dendritic growth model - equations

7.1.3.1 Branching process - describing the variation in the number of segments
and the variation in topological tree types

First, we describe the branching process on a series of time-bins, without specifying explicitly
the duration of each bin. The branching probability of a terminal segment at time bin i is
given by

pi = C2−SγB/NnE
i , (7.1)

with N denoting the total number of time bins in the full period of development and ni de-
noting the actual number of terminal segments or tips (degree) in the tree at time bin i. [10]
The parameter B denotes the expected number of branching events at an isolated segment
in the full period, while parameter E determines how strongly the branching probability of a
terminal segment depends on the number of tips in the tree. Such a dependency turns out to
be essential for reducing the proliferating effect of the increasing number of tips on the total
branching rate of the tree. [10] Parameter γ denotes the centrifugal order of the terminal
segment while

C = n/
∑n

j=1 2−Sγj

is a normalization constant, with a summation over all n terminal segments. Parameter S
determines how strongly the branching probability of a terminal segment depends on the
proximal/distal position of the segment in the tree. For S = 0, all terminal segments have
equal probabilities for branching, a mode of growth called random terminal growth. The
frequency distribution of tree types produced by this mode of growth has an expected value
for the tree asymmetry index of 0.46 for large trees. [11] For S 6= 0, the branching probability
of a segment depends on its position in the tree, resulting in more symmetrical trees when
S > 0 and more asymmetrical trees when S < 0. The number of time bins N can be chosen
arbitrarily, but such that the branching probability per time bin remains much smaller than
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unity, making the probability of there being more than one branching event in a given time
bin negligibly small.

The distribution of the number of terminal segments in dendritic trees after a period of
growth can be calculated by means of the recurrent expression

P (n, i) =
n/2∑

j=0

P (n− j, i− 1)

(
n− j

j

)
[p(n− j)]j [1− p(n− j)]n−2j, (7.2)

with P (n, i) denoting the probability of a tree of degree n at time bin i with P (1, 1) = 1,
and p(n) denoting the branching probability per time-bin of a terminal segment in a tree
of degree n, with p(n) = B/NnE. [10] A tree of degree n at time-bin i emerges when j
branching events occur at time-bin i − 1 in a tree of degree n − j. The recurrent equation
expresses the probabilities of all these possible contributions from j = 0, ..., n/2. The last two
terms express the probability that, in a tree of degree n− j, j terminal segments will branch
while the remaining n − 2j terminal segments will not do so. The combinatorial coefficient(

n− j
j

)
expresses the number of possible ways of selecting j terminal segments from the

existing n− j ones.

7.1.3.2 Elongation process - describing the variation in segment lengths

Elongation was initially included in the branching model by assigning an elongation rate to
growth cones at the time of their birth (i.e. after a branching event) which was randomly
chosen from a predefined distribution. This implementation was successful in describing the
mean and standard deviation of segment length distributions of basal dendrites of rat cortical
pyramidal neurons. [10] This agreement with empirical data was obtained by additionally
assuming that the elongation rate differed during two phases of dendritic development, the
first with branching and elongation, the second with elongation only.

Recent studies have also focussed on the shape of the segment length distributions, showing
that the first implementation of the elongation process resulted in monotonically decreasing
length distributions for intermediate segments. Empirical distributions of different cell types,
however, consistently show intermediate segment length distributions with a modal shape.
(e.g., [13, 16] In reconstructions of stained neurons short intermediate segments apparently
occur less frequently than was expected. Nowakowski et al. first noticed this phenomenon and
suggested a transient suppression of the branching probability immediately after a branching
event. [13] Such a reduction indeed resulted in a correct shape for the intermediate segment
length distributions. [13] Implementing such an assumption in our approach has a drawback,
however, in that it interferes with the branching process as described by the parameters B
and E and consequently with the shape of the degree distribution. We therefore followed a
different approach by giving daughter segments an initial length immediately after a branch-
ing event, and letting them further elongate at a slower rate. The elongation process is then
split into a process associated with a branching event, and a subsequent elongation process.
Such an implementation becomes plausible by considering that a branching event is not a
point process in time, but rather proceeds during a certain period of time during which a
growth cone splits and the daughter branches become stabilized.
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7.1.3.3 Time

Continuous time enters into the model when elongation rates are used. Thus far, the branch-
ing process (and the associated initial segment length assignments) were defined on a series
of time bins, without specifying the time bin durations. For the mapping of the time bins
onto real time, the total duration of the branching and elongation period needs to be defined
as well as the type of mapping, which we will assume to be linear.
It will be shown in the examples in this chapter that these assumptions indeed result in a
correct description of the segment length distribution while maintaining the proper shape of
the degree distribution. The initial length, given to new daughter segments, is determined by
random sampling of a predefined distribution. Both for the elongation rate and for the initial
length we have chosen a gamma distribution. Such a distribution is expected for distances
between Poisson distributed branching events along the path of an outgrowing neurite. [17]

Box 7.1 The Gamma Distribution
A gamma distribution has the form

g(x; α, β, γ) =
1

βγΓ(γ)
e

x−α
β (x− α)γ−1 (7.3)

for x > α, β > 0, γ > 0, while the gamma function Γ(γ) is defined by Γ(γ) =∫∞
0 e−ttγ−1dt. [18] The cumulative distribution is given by G(x; α, β, γ) =∫ x
α g(x; α, β, γ)dt with G(∞; α, β, γ) = 1. Parameter α indicates the start of

the distribution (offset), β a scaling unit and γ the shape of the distribution.
The mean value of the distribution is given by x = α + βγ and the standard
deviation is given by σx = β

√
γ. The modus of the distribution is at x =

α + β(γ − 1). For a given choice of the offset α, the parameters β and γ can
be estimated from the mean and standard deviation of a distribution by

β =
σ2

x− α
and γ =

σ2

β2
=

(
x− α

σ

)2

. (7.4)

For ease of interpretation, we will characterize a gamma function by the pa-
rameters α, x and σx.

7.1.3.4 Segment diameter

Segment diameters have not been modeled as part of the growth process, but are assigned
to the skeleton of the full grown tree. A power law relationship will be assumed, relating the
diameters of the segments at a branch point. By the power law relation, the diameter of a
parent segment (dp) relates to the diameter of its daughter segments d1 and d2 as

de
p = de

1 + de
2, (7.5)

with e denoting the branch power exponent. According to this relation, the diameter of an
intermediate segment di relates to the number n and diameter dt of the terminal segments
in its subtree as di = n1/edt, independent of the topological structure of the subtree.
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7.1.4 Dendritic growth model - parameters

The model includes the parameters B, E and S defining the branching process; the param-
eters αlin , lin and σlin defining the offset, mean and standard deviation, respectively, of the
gamma distribution glin for the initial lengths; and the parameters αv, v and σv defining the
offset, mean and standard deviation, respectively, of the gamma distribution for the sustained
elongation rates. At a branching event, initial lengths are assigned to both newly formed
daughter segments, by drawing random samples from the initial length distribution glin , and
elongation rates are assigned to both daughter segments, by drawing random samples from
an elongation rate distribution gv. These elongation rates hold until new branching events
occur at the respective segments. Associated with the sustained elongation we need to specify
the duration of the period of branching and elongation Tbe and of the subsequent period of
elongation only Te.

7.1.4.1 Parameter estimation

A summary of the parameters in the dendritic growth model is given in Table 7.1. Finding the
optimal parameter values needed to describe a particular set of observed dendritic branching
patterns is a multidimensional optimization task. The modular character of the model and the
assumption of independent branching and elongation, however, make it possible to optimize
branching and elongation processes separately. Plots of shape properties versus parameter
values offer additional material for manually finding reasonable parameter estimates. This
will be described below.
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Figure 7.2 (A) Expected value of the tree asymmetry index for a set of trees as a function of the growth
parameter S, calculated for trees of degree 5, 10, 20, 50, 100, 500, and (B) mean value of the centrifugal
order of segments as a function of the growth parameter S, calculated for trees of degree 10, 20, 30, 40, 50,
100, 150, 200, 250, 300, 350, 400, 450 and 500. Panel (C) expands the area -0.2 < S < 0.2.

Parameter S - Parameter S can be estimated from the value of the topological asymmetry
index. Fig. 7.2A illustrates how the expected value of the asymmetry index depends on the
value of parameter S and the number of terminal segments in the tree. The equations used
to calculate the tree-asymmetry index are reviewed in [11]. Note that these equations are
derived for the more general case in which also intermediate segments may branch. In the
present study we assume terminal branching only. Alternatively, parameter S can also be
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estimated from the mean centrifugal order of the tree. Figures 7.2B and C show how the
mean centrifugal order depends on the parameter S and the number of terminal segments in
the trees.
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Parameters B and E - Parameters B and E can be estimated from Fig. 7.3, illustrating
the mapping from branching parameters B and E to the expected mean and sd values of the
predicted degree distribution. The estimation proceeds by plotting the observed mean and
sd in the figure and finding the coordinates of this point in the B,E grid.

Metrical parameters αlin, lin, σlin for the initial length and αv, v and σv for the
sustained elongation rate - Once the branching process is defined, we need further specifi-
cation of the gamma distributions for the initial lengths glin and for the sustained elongation
rates gv. The parameters in both glin and gv have to be estimated from the empirical inter-
mediate and terminal segment length distributions, and the path length distribution. Good
estimates are, however, not directly obtained from these distributions but require a process
of optimization. Some considerations may help in finding reasonable estimates when using
a manual approach. The length of intermediate segments in the model is determined by (1)
the initial length assigned after a branching event, (2) the elongation rate assigned to this
segment and (3) the time elapsing before the segment experiences the next branching event.
A segment becomes a terminal segment when it fails to undergo branching before the end of
the growth period.

Terminal segments are generally longer than intermediate segments, both when compared for
the whole tree and when compared for a given centrifugal order within the tree. (e.g., [19,
20, 21]) Many dendritic trees also show a decrease of terminal segment length with increasing
centrifugal order. (e.g., [19]) These findings can be explained by considering that terminal
segments of a given centrifugal order have had more time, on the average, to elongate than
have intermediate segments of similar order, and that this time decreases for increasing order.
[17] This phenomenon occurs only when segments show sustained elongation in addition to
the initial length assigned to the daughter segments after branching. The length difference
in terminal segments of lowest and highest order can thus be used to obtain an estimate of
the sustained elongation rate during the period of branching. In the examples described in
section 2.6 we will see that rat neocortical pyramidal cell basal dendrites show such differences
whereas guinea pig cerebellar Purkinje cells do not (see also Fig. 7.4). Terminal segments
may become much longer than intermediate ones when dendritic development includes a
period of branching and elongation, followed by a period of elongation only. Additionally,
the elongation rates need not be equal during these two periods.

The variation in path lengths is the final outcome of all stochasticity in elongation and
branching. The standard deviation of the path length distribution can be used to estimate
the variation in the sustained elongation rates. These considerations help in estimating the
parameters αv, v and σv in the gamma function gv. The modal shape of the intermedi-
ate segment length distribution is determined by the initial length distribution glin and the
sustained elongation rate. Estimates for the parameters in glin have to be obtained using
equations 7.4 for a given choice for the length offset αin and considering the choices for the
parameters in gv.

Diameter parameters - The segment diameters in a tree have not been modeled as part
of a developmental process but have been directly assigned to the full grown skeleton tree
by means of the following procedure. First, terminal segment diameters dt are assigned by
random sampling the observed diameter distribution (or a normal distribution based on the
observed mean-sd values). Then, traversing the tree centripetally, at each bifurcation the
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diameter of the parent segment is calculated by means of Eq. 7.5, using (a) the diameters of
the daughter segments and (b) a branch power value e obtained by randomly sampling the
observed branch power distribution.

TABLE 7.1
Summary of parameters used in the dendritic growth model.

Parameter Aspect of growth Related to
B basic branching parameter segment number
E size-dependency in branching segment number
S order-dependency in branching topological structure
αlin initial length - offset segment length
lin (µm) initial length - mean segment length
σlin initial length - SD segment length
αvbe

elongation in ’branching/elongation phase’ - offset segment length
vbe (µm/h) elongation in ’branching/elongation phase’ - mean rate segment length
αve elongation in ’elongation phase’ - offset segment length
ve (µm/h) elongation in ’elongation phase’ - mean rate segment length
cvv coefficient of variation in elongation rates segment length

dt (µm) terminal segment diameter - mean segment diameter
σdt terminal segment diameter - SD segment diameter
e branch power - mean segment diameter
σe branch power - SD segment diameter
Note: Note that the segment diameter parameters are not part of the growth model, but used
afterwards to assign diameter values to the skeleton trees, produced by the model.
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Figure 7.4 Length of intermediate and terminal segments plotted versus their centrifugal order, for S1-rat
cortical layer 2/3 pyramidal cell basal dendrites (panels A and B) and for guinea pig cerebellar Purkinje cell
dendritic trees (panels C and D).

7.1.5 Dendritic growth model - examples

7.1.5.1 Application to S1-rat cortical layer 2/3 pyramidal cell basal dendrites

In S1-rats, the outgrowth of the layer 2/3 pyramidal cell basal dendrites starts at about 1
day after birth and continues with branching and elongation up to about day 14, followed by
a period of elongation up to about day 18. [16] The geometrical properties of these dendrites
are given in Table 7.2 and the segment length distributions in Fig. 7.5 as hatched histograms.
How segment lengths depend on centrifugal order is displayed in Fig. 7.4 (A,B).
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Figure 7.5 Comparison of (A) intermediate and (B) terminal segment length distributions of observed
S1-rat cortical layer 2/3 pyramidal cell basal dendrites (hatched histograms) and model generated trees (con-
tinuous lines) for the parameter values given in Table 7.3.

Estimation of parameter S - Interpolation from the observed asymmetry index of 0.41 in
Fig. 7.2A results in an estimate of S ≈ 0.5.
Estimation of parameters B and E - These parameters can be estimated from the mean
and standard deviation of the observed degree distribution when plotted as the point (4.04,
2.04) in Fig. 7.3. Estimates of the corresponding coordinates in the B,E-grid are then obtained
of B = 2.52 and E = 0.73.
Estimation of glin and gv - The observed distribution of intermediate segment lengths
(Fig. 7.5A) does not have a clearcut offset. We have assigned therefore a value of zero to
the offset parameter αin. The difference in length between highest and lowest order terminal
segments is about 50 - 60 µm (Fig. 7.4B). Given a total duration of branching of 312 h (13
days), we obtain a rough estimate of ≈ 0.2 µm/h for the sustained elongation rate in the first
developmental phase of branching and elongation. Values of lin = 6 µm and σlin = 5 µm, for
the initial length distribution in combination with a sustained mean elongation rate of 0.2
µm/h during this first phase, turned out to result in a good fit of the shape of the intermediate
segment length distribution. The shape of the terminal segment length distribution was fitted
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by assuming a mean elongation rate of 0.86 µm/h during the elongation phase. A coefficient
of variation of 0.47 and a zero value for αv were additionally assumed.
Diameter parameters - Diameter assignments can be made according to the procedure
described in section 2.2, using parameter values e = 1.6, σe = 0.2, dt = 0.6 µm and σdt =
0.1. [2, 21]

TABLE 7.2
Comparison of shape properties from experimental obser-
vations of S1 rat cortical layer 2/3 pyramidal basal den-
drites and of model simulated trees, obtained with opti-
mized values of the growth parameters, as given in Ta-
ble 7.3.

Observed Model predicted
Shape parameter Mean Standard Mean Standard

deviation deviation
Degree 4.04 2.04 4.05 2.02
Asymmetry index 0.41 0.24 0.4 0.23
Centrifugal order 1.86 1.2 1.85 1.19
Total dendritic length 527.6 265
Terminal length 110.7 45.2 112.62 44.8
Intermediate length 22.0 17.9 23.6 18.0
Pathlength 163.8 48.1 164.6 45.0

TABLE 7.3
Optimized values for growth parameters (see Table 7.1) to match the
statistical shape properties of S1-rat cortical layer 2/3 pyramidal cell
basal dendrites, given in Table 7.2.

Growth parameters

B E S αin lin (µm) σlin αvbe
vbe (µm/h) αve ve (µm/h) cvv

2.52 0.73 0.5 0 6 5 0 0.2 0 0.86 0.47
Note: Note that vbe and ve define the sustained elongation rates during the first period of branching
and elongation with a duration of 312 h (13 days), and the second period of elongation only with
a duration of 96 h (4 days), respectively.

Statistical properties of model-generated trees - The shape properties of 10000 model
trees are given by their mean and standard deviation and compared to experimental values
in Table 7.2. An excellent match is obtained. Unfortunately, empirical data for the total
dendritic length was not available. Not only the mean and standard deviation, but also the
shapes of the distributions matched closely, as is seen in Fig. 7.5 for the length distributions
of intermediate and terminal segments.
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7.1.5.2 Application to guinea pig cerebellar Purkinje cell dendritic trees

The second example concerns the analysis of three guinea pig Purkinje cell dendritic trees,
fully reconstructed by Rapp et al. [22] who analyzed in detail their physiological properties
and made them available via the WWW (http://leonardo.ls.huji.ac.il/∼rapp). The geometri-
cal properties of these cells have been calculated from these reconstructions, and their means
and standard deviations are given in the 2nd and 3rd column of Table 7.4.

TABLE 7.4
Comparison of shape properties from experimental observations
of guinea pig cerebellar Purkinje cell dendritic trees and of
model simulated trees, obtained with optimized values of the
growth parameters, as given in Table 7.5.

Observed Trees 1+2+3 Model trees
Shape parameter Mean Standard Mean Standard

deviation deviation
Degree 436 31.8 436 32
Asymmetry index 0.5 0.01 0.49 0.02
Centrifugal order 13.7 5.1 13.8 5.9
Total length 9577 1105 9265 683
Terminal length 11.3 8.8 10.6 7.5
Intermediate length 10.6 7.5 10.6 7.6
Pathlength 189.3 64.1 166 66

Estimation of parameter S - Interpolation from the observed asymmetry index of 0.50
in Fig. 7.2A results in an estimate of S ≈ −0.15. Interpolation from the observed mean
centrifugal order of 13.7 in Fig. 7.2C results in an estimate of S ≈ −0.14.
Estimation of parameters B and E - The values for the mean and standard deviation of
the observed degree distribution (436, 31.8) form a point in the map in Figure 7.3. The B, E
coordinates of this point can be obtained by reference to the B-E grid. A manual estimate
of B = 95 and E = 0.69 has been used. Note that the mean and standard deviation of the
degree distribution are based on only three observations. More observations are needed in
order to obtain a stable estimate for the location of the point in Figure 7.3 and, consequently,
for the estimate of the corresponding B,E coordinates.
Estimation of glin and gv - Figure 7.4C,D shows that segment lengths do not depend on
centrifugal order, and that intermediate and terminal segments have approximately equal
length. Similar findings have been obtained for Purkinje cell dendritic trees in mice [8] and
in rat [19]. It is therefore reasonable to assume that segments in the Purkinje cells have not
(or only moderately) undergone sustained elongation, and that the observed segment length
distributions (almost) fully reflect the initial lengths at the time of their origin. According
to this reasoning we can estimate the gamma distribution glin from the mean and standard
deviation of the intermediate segment length distribution (Table 7.4). The length offset αin

has been estimated from the observed distribution to be αin=0.7 µm.



Modeling dendritic geometry and the development of nerve connections - Van Pelt et al. 17

Diameter parameters - Segment diameters can be assigned according to the procedure,
described in section 2.2 with parameter values e = 2.0, σe = 0.3, dt = 1.1 µm and σdt = 0.1.
[2])

TABLE 7.5
Optimized values for growth parameters to
match the statistical shape properties of
guinea pig Purkinje cell dendritic trees,
given in Table 7.4. Parameters B, E, and
S define the branching process, and αlin, lin
and σlin define the gamma distribution for
the initial segment lengths.

Growth parameters

B E S αlin lin σlin

95 0.69 -0.14 0.7 µm 10.63 7.53

Examples of trees, produced with the above estimates for the growth parameters (Table 7.5)
are given in Fig. 7.6.

394
428

394

A B C

100 micron

Figure 7.6 Examples of trees randomly produced by the growth model for parameter values, optimized
for guinea-pig cerebellar Purkinje cells, as given in Table 7.5. Note that the diameters of the branches are
not produced by this model, but randomly assigned according the procedure, described in Section 2.2.

Statistical properties of model-generated trees. Statistical properties of tree shapes,
obtained by simulating 100 trees, are given in the 4th and 5th column of Table 7.4. An
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excellent matching is shown in both the mean and standard deviation of the different shape
parameters between the modeled and observed dendritic trees. Also the shapes of the dis-
tributions closely match, as is shown in Fig. 7.7 for the length distributions of intermediate
and terminal segments.
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Figure 7.7 Comparison of (A) intermediate and (B) terminal segment length distributions of observed
guinea pig Purkinje cells (hatched histograms) and model generated trees (continuous lines) for the parameter
values given in Table 7.4.

7.1.6 Discussion

The two examples discussed have shown that the model for dendritic outgrowth is able
to reproduce dendritic complexity, as measured by many geometrical properties to a high
degree of correspondence. The basic assumptions are (1) randomness and (2) independence in
branching and elongation. The modal shape of the intermediate segment length distributions
could be described by dividing the elongation process into a first phase associated with
branching events, and implemented in the model by the assignment of an initial length to
newly formed daughter segments, and a second phase of sustained elongation. guinea pig
Purkinje cell segment lengths turned out to be well described by the initial segment length
assignments only. In contrast, rat pyramidal cell basal dendrites required, in addition to the
initial segment length assignments there to be sustained elongation (with different rates for
the first period of elongation and branching, and a second period of elongation only). The
shape characteristics of the guinea pig Purkinje cells were based on dendritic reconstructions
of only three cells. The empirical data for the mean and standard deviation of the degree,
asymmetry index and total length consequently have modest stability and this could be
the explanation for the difference in total length standard deviation between observed and
modeled trees (Table 7.4).
The description of dendritic outgrowth as a stochastic process, defined by branching and
elongation probabilities, is the reflection of a complex of molecular, biochemical and cellular
processes. It is therefore surprising that a limited set of growth rules and parameters (espe-
cially in the case of the Purkinje cells) suffices to describe dendritic complexity with such a
high level of accuracy. The phenomenological approach, along with the quantified probability
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functions presented here, are first steps towards a further quantification of these processes
underlying neurite outgrowth and neuronal morphogenesis.

The model is useful, since it can produce any number of dendritic trees with realistic varia-
tions in the number of segments, topological structure and intermediate and terminal segment
lengths. Segment diameters are assigned using a branch power rule. These model dendrites
can then be used in neural simulators for studying structure-function relationships in den-
drites (see Chapters 8 and 9).

7.2 COMPETITION FOR NEUROTROPHIC FACTOR

IN THE DEVELOPMENT OF NERVE CONNEC-

TIONS

The development of connections between neurons and their target cells often involves an
initial stage of hyperinnervation followed by elimination of axons. [23] In some cases, elimi-
nation continues until the target is innervated by just a single axon, whereas in most other
cases, several innervating axons remain. An example of single innervation is the innervation
of skeletal muscle fibres (for review see e.g. [24]). The cells that act as targets for the inner-
vating axons appear to release limited amounts of ”neurotrophic” factors, which are taken
up by the axons via specific receptors at their terminals and which affect the growth and
branching of the axons (for reviews see e.g. [25, 26]). An important class of neurotrophic
factors is the neurotrophin family, with NGF (nerve growth factor) as its best characterized
member.

Competition among innervating axons for neurotrophic factors is thought to be involved in
axonal elimination and the generation of different patterns of innervation. [23] There is,
however, little understanding of the nature of the competitive process and the underlying
mechanisms. Computational models of activity-dependent development of nerve connections
(e.g. of the formation of ocular dominance columns) typically enforce competition rather than
model it explicitly (for a review see [27]). The first way in which this can be done is to enforce
synaptic normalization. Consider n synapses, with efficacies si, impinging upon a given
postsynaptic cell. Then, synaptic normalization is the constraint that

∑n
i sp

i = K, where K
is some constant and p is usually taken to be 1 or 2. Following a phase of Hebbian learning,
which changes the values of si, the new efficacies are forced to satisfy the normalization
constraint.

A second approach is that of Bienenstock et al., which does not impose synaptic normal-
ization. [28] Here, a modified Hebb rule is used, which has the effect that inputs driving
a postsynaptic cell below/above a certain threshold firing level cause a decrease/increase
in synaptic efficacy. The threshold itself is a time-averaged function of the activity of the
postsynaptic cell. This modified Hebb rule results in temporal competition between input
patterns, rather than spatial competition between different sets of synapses.

In most existing models of the development of nerve connections that do try to explicitly
model the putative underlying mechanism, competition is based on a fixed amount of neu-
rotrophin that becomes partitioned among the individual synapses or axons, i.e. there is
no production, decay, and consumption of the neurotrophin. (e.g. [29, 30, 31, 32, 33]) This
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assumption is biologically not very realistic. Our approach, similar to that of Jeanprêtre et
al. [34] in a model for the development of single innervation, considers the production and
consumption of neurotrophin. By formulating a model that incorporates the dynamics of
neurotrophic signalling (such as release of neurotrophin, binding kinetics of neurotrophin to
receptor, and degradation processes) and the effects of neurotrophins on axonal growth and
branching, competitive interactions emerge naturally. Our approach has similarities to that
of Elliott and Shadbolt, although they do not model all the processes involved in a dynamic
fashion (e.g. neurotrophin release and binding kinetics). [35]

Figure 7.8 Single target with three innervating axons. The target releases neurotrophin that is bound by
neurotrophin receptors at the axon terminals.

7.2.1 The model

The simplest situation in which we can study axonal competition is a single target at which
there are a number of innervating axons each from a different neuron. Each axon has a number
of terminals, on which the neurotrophin receptors are located (Fig. 7.8). In order to model
competition, we break it down into a number of subprocesses. First, neurotrophin needs to be
released by the target into the extracellular space. From there, it will be removed partly by
degradation and diffusion and partly by binding to the neurotrophin receptors at the terminals
of the innervating axons. The binding of neurotrophin to its receptor is a reversible reaction:
the forward reaction produces the neurotrophin-receptor complex, and the backward reaction
dissocates the complex back into neurotrophin and unoccupied receptor. The neurotrophin-
receptor complex is then taken up by the axons and is also subject to degradation. Receptor as
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well as neurotrophin are thereby removed. Therefore, we also need to consider the insertion of
new receptors into the axon terminals, as well as turnover of unoccupied receptors. Finally,
the growth and branching of each axon is affected by the amount of bound neurotrophin
(neurotrophin-receptor complex) the axon has across its terminals.

7.2.1.1 Release and removal of neurotrophin

Because the binding of neurotrophin to receptor is what triggers the biological response,
we describe, for each axon i, the time-dependent change of the axon’s total amount of
neurotrophin-receptor complex. The total amount of neurotrophin-receptor complex an axon
has over all its terminals, Ci for axon i, increases by binding of neurotrophin to receptor,
and decreases by dissociation and degradation. Thus, for the rate of change of Ci, we can
formulate the following differential equation:

dCi

dt
= (ka,iLRi − kd,iCi)− ρiCi, (7.6)

where L is the extracellular concentration of neurotrophin, Ri is the total number of un-
occupied receptors which axon i has over all its terminals, ka,i and kd,i are the respective
association and dissociation constants of the reversible binding of neurotrophin to receptor,
and ρi is the rate constant for degradation of the complex.
The total number of unoccupied receptors and the concentration of neurotrophin in the extra-
cellular space are not constants but rather change in time. The total number of unoccupied
receptors that an axon has over all its terminals, Ri for axon i, increases by the insertion
of new receptors into the terminals as well as by dissociation of the neurotrophin-receptor
complex; it decreases by the binding of neurotrophin to receptor and by receptor turnover.
Thus,

dRi

dt
= φi − γiRi − (ka,iLRi − kd,iCi), (7.7)

where φi is the rate of insertion of new receptors and γi is the rate constant of turnover.
The concentration of neurotrophin in the extracellular space, L, increases by the release
of neurotrophin from the target and by the dissociation of neurotrophin-complex into neu-
rotrophin and receptor; it decreases by the binding of neurotrophin to receptor and by degra-
dation. Thus,

dL

dt
= σ − δL−

n∑

i=1

(ka,iLRi − kd,iCi)/v, (7.8)

where σ is the rate of release of neurotrophin, δ is the rate constant for degradation, n is
the total number of innervating axons, and v is the volume of the extracellular space (L is a
concentration, while Ri and Ci are defined as amounts). The rate of release of neurotrophin,
σ, could depend on the level of electrical activity in the target.
Equations (7.6) and (7.7) are similar to the ones used in experimental studies for analysing
the cellular binding, internalization and degradation of polypeptide ligands such as neu-
rotrophins. (e.g. [36])
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7.2.1.2 Axonal growth

The binding of neurotrophin to receptor triggers the biological response. Many studies have
shown that neurotrophins locally increase the arborization of axons which will consequently
cause an increase in the number of axon terminals. (e.g. [37]) It is reasonable to assume that
increasing the number of axon terminals, on whichthe neurotrophin receptors are located,
will increase the axon’s total number of neurotrophin receptors. Other effects induced by
neurotrophins that are likely to increase the total number of axonal neurotrophin receptors
are (i) increasing the size of axon terminals (e.g. [38]) and (ii) upregulating the density of
neurotrophin receptors (e.g. [39]).

In order for the total number of receptors to be able to increase in response to neurotrophins,
the total number of unoccupied receptors that is inserted into the axon per unit time, φi, must
increase in response to bound neurotrophin. We assume that the larger the amount of bound
neurotrophin, Ci, the larger φi will be. That is, φi is an increasing function, fi(Ci), of the
amount of bound neurotrophin, Ci. We call funtion fi(Ci) the growth function. Compared
to the dynamics of the other processes involved, axonal growth takes place on a relatively
slow time scale. To account for this, φi must lag behind its ‘target’ value given by fi(Ci).
This lag can be modelled by the following differential equation:

τ
dφi

dt
= fi(Ci)− φi. (7.9)

where the time constant τ of growth is of the order of days. The value of φi will follow
changes in fi(Ci) (as a result of changes in Ci) with a lag; at steady-state, φi = fi(Ci).

The precise form of the growth function, fi(Ci), is not known; we therefore use a general
increasing function that can admit a range of different forms depending on its parameters.
The effects of the form of the growth function on competition can then be studied. We use
the general growth function

fi(Ci) =
αiC

m
i

Km
i + Cm

i

. (7.10)

This is an increasing function that saturates towards a maximum, αi. Parameter Ki is the
value of Ci at which the response is half its maximum. Using this general growth function,
we can distinguish a number of different classes of growth functions (Fig. 7.9).

Class O: for m = 0, fi(Ci) is a constant (fi(Ci) = αi/2) and independent of the level of
bound neurotrophin, Ci.
Class I: for m = 1 and large Ki (Ki À Ci), growth is linear over a large range of Ci

(fi(Ci) ≈ αiCi/Ki).
Class II: for m = 1 and smaller values of Ki (Ki 6À Ci), the growth function is a Michaelis-
Menten function (fi(Ci) = αiCi/(Ki + Ci)) (see Chapter 2).
Class III: for m = 2 the growth function is a Hill function (fi(Ci) = αiC

2
i /(K

2
i +C2

i )), which
is sigmoidal.
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Figure 7.9 Growth function f(C) = αCm/(Km + Cm) for the different classes described in the text. For
class O, α = 300; for class I, α/K = 1.5; for classes II & III, α = 300 and K = 100.

Within each class of growth function, the specific values of the parameters (αi and Ki),
as well as those of the other parameters, may differ among axons. Various factors in the
innervating axon, some dependent on, and some independent of its electrical activity, may
influence the values of these parameters. For example, the finding that increased presynaptic
electrical activity increases the number of neurotrophin receptors (e.g. [40]) implies that
increased electrical activity affects growth (i.e. higher αi or lower Ki) or neurotrophic sig-
nalling (e.g. lower γi) or both. As the level of electrical activity and other factors can vary
among innervating axons, there will be variations in parameter values among axons.
The whole model thus consists of three differential equations for each axon i (eqns (7.6),
(7.7), and (7.9)) and one equation for the neurotrophin concentration (eqn (7.8)). By means
of numerical simulations and mathematical analysis, we can examine the outcome of the
competitive process. Axons that at the end of the competitive process have no neurotrophin
(Ci = 0; equivalent to φi = 0) are assumed to have withdrawn or died, while axons that do
have neurotrophin (Ci > 0; equivalent to φi > 0) are regarded as having survived.

7.2.2 Units and parameter values

All parameters in the model have a clear biological interpretation. For the numerical sim-
ulations, the parameter values were taken from the data available for NGF. Because the
high affinity NGF receptor mediates the biological response, the association and dissociation
constants of this receptor were taken: ka = 4.8 × 107 [M−1 s−1], kd = 1.0 × 10−3 [s−1]. [41]
The rate constant for the turnover of receptor, γ, was calculated from the receptor half-life
[42]; γ = 2.7 × 10−5 [s−1]. The rate constant for the degradation of neurotrophin-receptor
complex, ρ, was calculated from the half-life of complex [43]; ρ ≈ 2.0× 10−5 [s−1]. The rate
constant for degradation of neurotrophin in the extracellular space, δ, was estimated using
data on neurotrophin concentration changes following blockade of axonal transport (as in
[34]); δ ≈ 1.0 × 10−5[s−1]. The standard value used in the model for the rate of release of
neurotrophin was set at σ ≈ 2.0 × 10−16 [M s−1], which is well within the range of values



24 Modeling dendritic geometry and the development of nerve connections - Van Pelt et al.

given in [44, 34]. Based on data on the time course of the growth of the number of receptors
τ was set at 2 days. [45] Parameter v, the volume of the extracellular space around the target
cell in which neurotrophin is released, acts as a scale parameter and was set at 1.7 × 10−11

[l].
The values of Ri, Ci, and Ki are in [number of molecules]; the value of L in [M] (= [mol
l−1]). The values of αi and φi are in [number of molecules h−1]. Time is in hours [h]. Only
the value of αi varies among axons. Unless otherwise indicated, the initial value of all φi is
10.0 [molecules h−1]. The initial values of Ri, Ci and L are such that when keeping all φi at
their initial value, the system is in equilibrium.

7.2.3 Examples of results and predictions

For an extensive overview of the results of the model, see [46]. Here we restrict ourselves
to a few examples. The model (with growth functions of classes II and III) accounts for
the experimental finding that increasing the amount of neurotrophin increases the number
of surviving axons. (e.g. [47, 48]) In the model, elimination of axons takes place until either
one or several axons survive, depending on (among other parameters) the rate of release of
neurotrophin, σ: the larger σ, the more axons survive (Fig. 7.10a,b).
The axons having a survival advantage are the ones with the highest value for the quantity
βi defined as (ka,i(αi/Ki − ρi))/(γi(kd,i + ρi)), which we interpret as the axon’s competitive
strength. Because βi contains parameters that may be affected by the axon’s level of electrical
activity (e.g. αi), the axons having a survival advantage will be the most active ones provided
that variations due to other factors do not predominate.
In agreement with the model, in skeletal muscle, stable states of single and multiple inner-
vation can coexist, as with class III of the growth function (Fig. 7.10c). Persistent multiple
innervation is found in partial denervation experiments after reinnervation and recovery from
prolonged nerve conduction block. [49] In terms of the model, conduction block changes the
competitive strengths of the axons, which changes the sizes of the basins of attractions of
the different equilibria. This can cause the system to go to an equilibrium of multiple in-
nervation, while under normal conditions single innervation develops. When the conduction
block is removed, the system will remain in the basin of attraction of the multiple innervation
equilibrium, i.e. multiple innervation persists.
Our analysis suggest that of the many axonal features that change during growth in response
to neurotrophin (degree of arborization and, consequently, number of axon terminals; size
of terminals; and density of receptors) the consequent change in the axon’s total number of
neurotrophin receptors, changing its capacity for removing neurotrophin, is what drives the
competition. The model predicts that axons that are in the process of being eliminated will
have a relatively small number of neurotrophin receptors.
The type of dose-response relationship between neurotrophin and total number of neu-
rotrophin receptors (i.e. the growth function), which is crucial in our model for determining
what patterns of innervation can develop, can be determined experimentally in vitro by
measuring, for different concentrations of neurotrophin in the medium, the total number of
terminals of an axon or, more specifically, the axon’s total number of neurotrophin receptors
(for details see [46]). The model predicts that the type of growth function will determine the
relationship between the concentration of neurotrophin and the number of surviving axons.
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For example, the smaller the value of Ki, the lower the concentration of neurotrophin needed
to rescue more axons (Fig. 7.10d).

Figure 7.10 Results with class II of the growth function (a,b,c). a. Single innervation. The axon with
the highest value of αi among the initial 5 axons survives. α1 = 700, α2 = 400, α3 = 300, α4 = 200, α5 = 100
and K = 500. b. Multiple innervation with a rate of release of neurotrophin, σ, that is 35 times higher
than the standard value. Other parameter values as in a. c. Relationship between the rate of release of
neurotrophin (in units of the standard value) and the number of axons with Ci > 10 at t = 504, for K = 500
(filled squares) and K = 150 (open squares). Other parameter values as in a. d. Coexistence of equilibrium
points of single and multiple innervation, in a system of two innervating axons (n = 2), with a class III
growth function. The variables {Ri, Ci, i = 1, 2} and L are at quasi-steady state. The bold line depicts the
solutions of the equation dφ1

dt = 0 and the light line those of dφ2
dt = 0. (the lines φ1 = 0 and φ2 = 0 are also

solutions of dφ1
dt = 0 and dφ2

dt = 0, respectively, but are not drawn). The intersection points of these nullclines
are the equilibrium points of the system. Vectors indicate direction of change. Filled square indicates stable
equilibrium point, and open square unstable equilibrium point (Note that φi > 0 ⇔ Ci > 0 (axon i present)
and φi = 0 ⇔ Ci = 0 (axon i eliminated)). The stable equilibrium point at (φ1 = 0, φ2 = 0) is not indicated
as it is too close to another, unstable point. Which of the stable equilibria will be reached depends on the
initial values of φi, and the sizes of the basins of attraction of the equilibria, which are sensitive to the values
of the competitive strengths, βi. Parameters: α1 = α2 = 300, K = 30.
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7.2.4 Conclusions

Our model of competition links the formation of nerve connections with the underlying
actions and biochemistry of neurotrophins. The model accounts for the development of
single and multiple innervation, as well as several other experimental findings, and makes
testable predictions. Although the parameter values were taken from the data available for
NGF, mathematical analysis shows that our results are general and do not depend on specific
choices of the parameter values. [46]
The model can be extended in several ways. In reality, axons can have more than one target.
In the model, the rate of insertion of receptors could then be different for branches innervating
different targets. This will cause also competition within axons between different branches
in addition to competition among axons. (see also [30, 31])
In the present model, we have assumed that the concentration of neurotrophin is homoge-
neous in the extracellular space that surrounds the target; in other words, all innervating
axons ‘sense’ the same concentration. This assumption may not be realistic, especially if the
target is large (e.g. a neuron with a large dendritic tree, onto which the axons impinge). This
can be taken into account in our model by modelling the extracellular space as a collection
of ‘compartments’, into which neurotrophin is released locally from the target. Some of the
compartments will have an innervating axon, which removes neurotrophin molecules locally.
In addition, there will be diffusion of neurotrophin between compartments (see Chapter 3).
For preliminary results of such a model, see [50].
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