Editorial: Anatomy and plasticity in large-scale brain models
Butz, M., Schenck, W., and Van Ooyen, A. (2016). Frontiers in Neuroanatomy doi: 10.3389/fnana.2016.00108. [Full text: PDF]
Abstract
Supercomputing facilities are becoming increasingly available for simulating electrical activity in large-scale neuronal networks. On today's most advanced supercomputers, networks with up to a billion of neurons can be readily simulated. However, building biologically realistic, full-scale brain models requires more than just a huge number of neurons. In addition to network size, the detailed local and global anatomy of neuronal connections is of crucial importance. Moreover, anatomical connectivity is not fixed, but can rewire throughout life (structural plasticity)—an aspect that is missing in most current network models, in which plasticity is confined to changes in synaptic strength (synaptic plasticity).
The papers in this research topic, which may broadly be divided into three themes, aim to bring together high-performance computing with recent experimental and computational research in neuroanatomy. In the first theme (fiber connectivity), new methods are described for measuring and data-basing microscopic and macroscopic connectivity. In the second theme (structural plasticity), novel models are introduced that incorporate morphological plasticity and rewiring of anatomical connections. In the third theme (large-scale simulations), simulations of large-scale neuronal networks are presented with an emphasis on anatomical detail and plasticity mechanisms. Together, the papers in this research topic contribute to extending high-performance computing in neuroscience to encompass anatomical detail and plasticity.
To view all papers, go to the research topic, or download from Frontiers Books the Ebook that was produced of the research topic.