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During the development of the nervous system, all kinds of structural elements such as neurons, neuritic
extensions and synapses are initially overproduced (so-called overshoot phenomena). Neurite outgrowth
has been found to be regulated by electrical activity of the neuron. High levels of activity, resulting in
high intracellular calcium concentrations, cause neurites to retract whereas low levels of activity, and
consequently low calcium concentrations, allow further outgrowth. In this article, we have studied the
implications of such activity-dependent neurite outgrowth for network formation, using a distributed
simulation model. The model consists of initially disconnected cells that organize themselves into a
network under the influence of their intrinsic activity. A neuron is modelled as a neuritic field, the
growth of which depends upon its own level of activity, and the neurons become connected when their
fields overlap. It is demonstrated here that activity-dependent outgrowth in combination with a
neuronal response function with some form of firing threshold—which gives rise to a hysteresis effect—is
sufficient to cause an overshoot with respect to connectivity or number of synapses. As a consequence
of such hysteresis, the network connectivity at which a phase transition occurs from the quiescent to
the activated state must be higher than that for maintaining activity at a level where neuritic fields and
connectivity remain constant. A developing network will therefore first increase its connectivity until -
it becomes activated, upon which the neurites begin to retract. Connectivity then decreases until the
equilibrium value is reached, thus causing the growth curve to exhibit overshoot. The results are robust
under various alternative formulations of the mode!, and show certain similarities with findings in
developing cultures of dissociated nerve cells, namely a transient overproduction of synapses and the
existence of a transition period in which increasing electrical activity is associated with retraction of
neurites.

1. Introduction 1.1, NEURITE QUTGROWTH

Neurons become assembled into functional neural
networks during development. Among the many fac-
tors influencing the ultimate structure and function of
the nervous system, ¢lectrical activity plays a pivotal
role (for review see Fields & Nelson, 1992). Many
mechanisms that determine neuronal connectivity
such as neurite outgrowth, growth cone behaviour,
naturally occurring cell death, trophic factors, synap-
togenesis, elimination of synapses, and changes in
synaptic strength have been found to be modulated by
electrical activity.
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Electrical activity of the neuron reversibly arrests
neurite outgrowth (or produces retraction) and
changes growth cone morphology (Cohan & Kater,
1986; Fields er al., 1990a; Schilling et al., 1991).
Similarly, depolarizing media and neurotransmitters
affect neurite outgrowth of many cell types (e.g.
Sussdorf & Campenot, 1986; Lankdorf er al., 1987,
McCobb er al., 1988; Lipton & Kater, 1989; Mattson
& Kater, 1989; Todd, 1992), with excitatory neuro-
transmitters inhibiting outgrowth and inhibitory
ones stimulating outgrowth. Electrical activity and
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neurotransmitters probably regulate neurite out-
growth by affecting the calcium concentration in
growth cones (Cohan et al., 1987, Fields et al., 1990b;
Kater & Mills, 1991). This has led to the calcium
theory of neurite outgrowth (e.g. Kater er al,
1988, 1990; Kater & Guthrie, 1990), which posits that
low intracellular calcium concentrations ([Ca®*],)
stimulate outgrowth, higher concentrations cause a
cessation of outgrowth, and stiill higher concen-
trations lead to regression of neurites. Thus, all
factors that change [Ca®*}, (such as action potentials
or other forms of depolarization and neurotransmit-
ter actions) are potentially able to affect neurite
outgrowth. Alterations in [Ca’*], have also been
implicated in the development of dendritic mor-
phology (Kater et al., 1990). Because of the morpho-
logical changes that accompany changes in [Ca?t],,
and the large number of signals that influence it,
mechanisms regulating {Ca**],, have been proposed to
represent a major means by which entire patterns of
neuronal circuitry can be specified (Lipton & Kater,
1989).

Applied electric fields, too, influence nerve growth,
with respect both to branching (McCaig, 1990a) and
to the rate of elongation {McCaig, 19905).

1.2. CELL DEATH

Neuronal activity may play an important role in
the regulation of naturally occurring cell death (e.g.
Brenneman & Eiden, 1986; Lipton, 1986; Oppenheim,
1991; Ferrer et al., 1992). The neurotrophic theory,
which asserts that neurons depend upon, and compete
for, neurotrophic factors that are released only
in limited amounts by their targets (Hamburger &
Oppenheim, 1982; Purves, 1988), provides a frame-
work for understanding cell death during normal
ontogeny. The synthesis of the neurotrophic factors
NGF (nerve growth factor) and BDNF (brain derived
neurotrophic factor) by neurons in the central
nervous system has been found to be regulated by
neuronal activity (Zafra et al., 1990; Lu et al., 1991,
Thoenen, 1991), The degree of neuronal dependence
on NFG may also be modulated by electrical activity,
since it depends on [Ca®*),, (Koike & Tanaka, 1991).

1.3. SYNAPSES

The refinement of imprecise patterns of connec-
tivity takes place in an activity-dependent manner (for
reviews see Purves & Lichtman, 1980; Shatz, 1990). In
addition to activity-dependent changes in neuronal
circuitry that are based on morphological alterations
in connectivity, the efficacy of synaptic transmission
in existing connections can also be modulated by
electrical activity. Hebb (1949) has proposed that

coinciding pre- and postsynaptic activity may lead to
changes in synaptic strength. Similar mechanisms are
believed to underlie long-term potentiation {(LTP) {for
reviews see Brown et al., 1990; Madison et al., 1991;
Tsumoto, 1992) and synaptogenesis in the developing
brain (e.g. Constantine-Paton, 1990). There is also
accumulating evidence for the presence of activity-
dependent long-term depression (LTD) in the cerebel-
lum (Ito, 1989), hippocampus (Stanton & Sejnowski,
1989) and neocortex (Artola ef al., 1990}. The matu-
ration of neuronal properties and neuronal differen-
tiation, too, seems to be under control of electrical
activity (Spitzer, 1991). For example, electrical
activity might be crucial for the full maturation of
inhibitory synaptic mechanisms (Hendry & Jones,
1988; Corner & Ramakers, 1992).

1.4, NETWORK FORMATION AND OVERSHOOT

A wide range of processes having great significance
for network formation appear to be modulated by
neuronal activity, As a result, a mutual influence
exists between the formation of synaptic connectivity
and neuronal electrical activity, i.e. a feedback loop
exists between changes in network structure and
changes in network activity (Von der Malsburg &
Singer, 1988). This feedback loop must be expected to
have major implications not only for the structure of
the mature network, but also for the stages a network
goes through during its development.

A general feature of nervous system development,
in vivo as well as in vitro, is that virtually all structural
elements show an initial overproduction, followed by
an elimination during further development. These
so-called overshoot phenomena occur, for example,
with respect to neuron numbers (e.g. Finlay & Slat-
tery, 1983; Heumann & Leuba, 1983; Cowan et al,,
1984; for reviews see Oppenheim, 1991; Ferrer et al.,
1992), connections (e.g. Kato er al.,, 1985; Price &
Blakemore, 1985; Stanfield & O’Leary, 1985), total
dendritic length (Uylings et al., 1990}, number of
dendrites (Miller, 1988), number of axons (Schreyer &
Jones, 1988; Gorgels et al., 1989), number of synapses
(e.g. Purves & Lichtman, 1980; Huttenlocher et al.,
1982; Warren & Bedi, 1984; O’Kusky, 1985; in vitro:
Van Huizen et al., 1985, 1987), receptors (e.g. Insel
et al.,, 1990; McDonald et al., 1990; for review see
McDonald & Johnston, 1990), and expression
of neurotransmitters {(e.g. Wahle & Meyer, 1987;
Parnavelas et al., 1988).

In most neural network models, the activity pat-
terns of the system are studied in response to external
input, given a particular collection of cells and net-
work structure. In developing networks, however, the
number of cells and network structure are variable
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and under control of the network activity itself (via
the above mentioned activity-dependent processes).
Furthermore, in the initia! stages of development
activity patterns that are not evaked by external input
play a large role {see also Corner, 1990). Insight into
the implications of activity-dependent processes and
endogenous activity will therefore be indispensable
for understanding the ontogenetic stages of the
nervous system. In this article, we will address the
implications of one of these processes, namely ac-
tivity-dependent neurite outgrowth. It will be shown
that this process can account for the occurrence of a
transient overproduction of connections or synapses.

No simulation models for explaining overshoot
are known to us. In Feinberg er al. (1990) only a
descriptive statistical model is presented for some
overshoot phenomena in vipo.

2. The Model

The model is not meant to mimic a particular
nervous system, but is rather used as a tool to gain
insight into the role of activity-dependent outgrowth
for network formation in general. We use a dis-
tributed model in which initially disconnected neur-
ons organize themselves into a synaptically connected
network by neurite outgrowth and synaptogenesis,
under influence of endogenous activity (there is no
external input). Growing neurons are modelled as
expanding neuritic fields, and the outgrowth of each
neuron depends upon its own level of electrical ac-
tivity. Neurons become connected when their neuritic
fields overlap. All connections are taken to be excit-
atory, considering that the predominant form of
synaptic activity during early stages of development
appears to be excitatory (Jackson et al., 1982; O’Brien
& Fischbach, 1986; Habets et af., 1987; Cherubini et
al., 1991; Corner & Ramakers, 1992). The model is
inspired in part by tissue cultures of dissociated
cerebral cortex cells (Van Huizen et al., 1985, 1987;
Van Huizen, 1986; Ramakers ef al., 1991). As in the
model, cells in such cultures become organized into a
network without the influence of external or sensory
input.

2.1. NEURON MODEL

The shunting model (Grossberg, 1988; Carpenter,
1989), which mirrors the underlying physiology of
simple nerve cell dynamics (Hodgkin & Huxley,
1952), is used to describe neuronal activity. In this
model, excitatory inputs drive the membrane poten-
tial towards a finite maximum (or saturation poten-
tial, e.g. the Na* equilibrium potential), while

inhibitory inputs (if any) drive the membrane poten-
tial towards a finite minimum (e.g. the K* equi-
librium potential).

For a purely excitatory network, the shunting
model becomes

ax,
dt

where X; is the (mean) membrane potential of neuron
i, F(X;) is the mean firing rate of ncuron j, W, is the
coupling strength between neuron i and j (W, 2 G; W,
is defined in section 2.2), and N is the total number
of neurons. Thus, eqn (1) takes the output of a neuron
to be a mean firing rate. The effect of neuron j on X;
is mediated by trains of action potentials, and hence
is proportional to the product of F(X;) and W,. The
sum of all excitatory inputs, XY W, F(X), drives X,
towards the excitatory saturation potential, which is
set equal to 1. In the absence of inputs, X, decays, with
a rate determined by 1/1, to the resting potential,
which is set equal to 0. Thus, X; is scaled between
0 and 1. The initial values of X; are set below
the saturation potential (i.e. X;< 1), The firing rate
function F is a sigmoidal function of the membrane
potential
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where F(X) is the firing rate [with its maximum set
to 1, see Fig. 1(b)], « determines the steepness of
the function and 8 represents the firing threshold.
The low firing rate when X is sub-threshold may be
considered as representing spontaneous activity, aris-
ing from threshold fluctuations (Verveen, 1960),
membrane potential fluctuations, synaptic noise
(Korn & Faber, 1987), and/or random external input.
Equation (1) and similar ones have been widely used
in the field of neural network modelling (Grossberg,
1988; and references therein).

F(X)= 2)

2.2. OUTGROWTH AND CONNECTIVITY

Neurons are randomly placed on a two-dimen-
sional surface. In order to model outgrowth and
formation of connections, each neuron is given a
circular “neuritic field”, the radius of which is vari-
able, When two such neuritic fields overlap, both
neurons, say i and j, become connected to each other
with a strength proportional to the area of overlap

Wij = Arjc (3

where A, = 4, is the amount of overlap (4,=0) and
¢ is a constant of proportionality; 4,; may be regarded
as representing the total number of synapses formed
between neuron i and j, while ¢ could represent the
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FiG. 1. The size of the hysteresis loop [eqn (9)] depends on « of the firing rate funcuon F{X) [eqn (2)]). The smaller «, the steeper F(X)
(b) and the larger the hysteresis loop (a). Shown are & =012, 0-10 and -08.

synaptic strength. In this abstraction, no distinction
has been made between axons and dendrites. If one
were to do so, this would lead to a connectivity matrix
W that needs no longer be symmetric, In most of the
simulations we used eqn (3). Just in order to test
whether asymmetry would affect the results, we also
used

er = Aij er (4)

where A4, is as before and C;; is uniformly distributed
with mean ¢, so W becomes asymmetric.

In the model, the outgrowth of each individual
neuron depends upon its own level of electrical
activity. Since the effect of activity on outgrowth
is likely to be mediated by [Ca’*], (Cohan et al.,
1987, Fields er al., 1990b; Kater & Mills, 1991),
and one of the consequences of the firing of action
potentials is the influx of caicium ions (e.g.
Hockberger et al., 1989), leading to elevated [Ca’*],,
we take the outgrowth to be dependent upon the
firing rate

dR,

ar = pG(F(X})) (5)
where R, is the radius of the circular neuritic field of
neuron £, and p determines the rate of outgrowth. The
outgrowth function G is defined as

2

GEX) =1 = T ——=rmw (6)

where ¢ is the value of F(X) for which G =0 and j
determines the steepness of the function. The function
& remains in the bounded range {— 1, 1). Depending
on the firing rate, a neuritic field will grow out [G >0
when F(X,) <¢], retract [G <0 when F(X;)>¢€] or
remain constant [G =0 when F(X)) = ¢] (see Fig. 2).
Equation (6) is simply a phenomenological descrip-
tion of the theory of Kater et al. (Kater et al.,

1988; Kater & Guthrie, 1990, Kater et af., 1990)
that the electrical activity of a neuron affects
(via calcium influx) its outgrowth. High activity or
[Ca®*),, produces retraction, as reported in (Cohan &
Kater, 1986; Fields et al, 1990a; Schilling et al,
1991), and low activity or [Ca®*],, allows outgrowth.
This description is also in agreement with obser-
vations that suppression of activity favours neurite
outgrowth (Van Huizen & Romijn, 1987; Schilling ef
al., 1991). An admittedly unrealistic property of egn
(6) is that if F(X,) <e¢, a neuron could grow out
indefinitely. We preferred, however, not 'to put ex-
plicit bounds on the neuritic field size, because it
appeared that the network itself is capable of rcgulat-
ing the size of its neurons.

Essential in the formulation of the outgrowth
model is that connectiivity can change during develop-
ment. Using growing neuritic fields and taking the
connection strength proportional to the area of over-
lap is just one way of achieving this. In addition, we
have also studied several other ways of changing
connectivity (see Section 4). )

To summarize, each neuron is described by differ-
ential equations for both the membrane potential X
and the radius of the neuritic field R. In total, the

P
R €

dR; 4

dt FiX) \
—p

1

FiG. 2. Outgrowth function G [eqn (6)).



OVERSHOOT IN DEVELOPING NEURAL NETWORKS 31

model thus consists of 2N differential equations,
where N is the total number of neurons. The connec-
tivity matrix W(N x N) is variable and is determined
by calculating the degree of overlap of the neuritic
fields. The model is studied both analytically and by
means of numerical solution, employing the variable
time step Runge—Kutta integrator provided by Press
et al. (1988).

2.3. PARAMETERS

The membrane time constant T was set at 8 msec,
which is well within the range of values reported for
cortical cells (Connors et al., 1982) and hippocampal
cells (Lacaille er al., 1987), However, the results will
appear not to depend upon the actual choice for 1.
The outgrowth of neurons is on a 1ime scale of days
or weeks (Van Huizen et /., 1985, 1987; Van Huizen,
1986; Ramakers et al., 1991; Schilling et af., 1991), so
that connectivity can be regarded as quasi-stationary
on the time scale of membrane potential dynamics
(i.e. p much smaller than 1/7). To avoid unnecessarily
slowing down the simulations, p was chosen as large
as possible so as to maintain the quasi-stationary
approximation. In most simulations, we used
p=25x10"% As nominal values for the other
parameter, we choose 8 =05, a =0-10, § =0-10
and ¢ = 0-60. The effect of other values was studied
in order to test the robustness of the results (see
Section 4).

3. Results

3.1. GLOBAL MODEL BEHAVIQOUR

The behaviour of the model can in part be pre-
dicted directly from eqn (1). The excitatory network
defined by eqn (1) (W, =0; W, need not equal W)
has, for biologically realistic initial conditions
(X;< 1), convergent dynamics (Hirsch, 1989). every
trajectory converges to some equilibrium point. The
equilibrium states of the system for a given W are
given by the solutions of

0= X +(-X)LW,FX)  vi ()
i

If the variations in X, are small (i.c. relative to X),
we find for the average membrane potential of the
network (see Appendix)

0 —Xjz +(1- HWFX) ®)

where W=(1/N)I) W,. By means of numerical
simulation, it was confirmed that eqn (8) captures
the essentials for qualitatively describing the global

Fig. 3. Hysteresis. Steady state (d.X/d7 =0) dependence on W
(W ={1/N)I¥, W), according to eqn (9). See further Section 3.1
of text,

behaviour of the model in terms of W and X (see
Section 3.2). Based on this approximation, W can be
written as a function of X

X/t
(1 — DF(X)

which gives the steady state (dX/d¢ =0) depen-
dence on W (Fig. 3). The steady states lying on
the branch ABC (quiescent states: X is low) and
on DEF (activated states: X is high) are stable,
whereas those on CD are unstable. Thus for w, <
W<w, (w and w, are the critical points), there
exist two stable steady states (see also Murray,
1989). For slowly increasing W (starting at A4) the
path followed by ¥ is different from that for
slowly decreasing W (starting at F). ABCEF and
FEDBA, respectively. The presence of this hysteresis
loop underlies the emergence of overshoot.

The size of the neuritic fields, and therefore W, is
governed by the system itself, being under control of
neuronal activity, A neuritic field remains constant
for G =0, ie. if X,= F~'(¢) [eqn (6)], where F~' is the
inverse function of F. If this holds for all cells, W
remains constant. Then, since all cells have identical
¢, also X = F~'(¢). Thus, the equilibrium point of the
system is the intersection point of the line X = F~'(¢)
with the curve of Fig. 3. The rate of outgrowth is so
low relative to the dynamics of the membrane poten-
tial that, for changing W, X follows the curve.
Starting with initially disconnected cells (W = 0), the
model can display four qualitatively different kinds of
global behaviour (see Fig. 4), depending on the
position of the equilibrium point (on branch DE, EF,
ABC, or CD}, Those lying on the branch CD are
unstable, the rest are stable.
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" F1G. 4. Behaviour of the model (with ¢ =0-1, N = 64) for different values of . Connectivity C, against time, and against average
membrane potential ¥ (C =1Z¥ 4, =total area of overlap = NW/2c). (a) ¢ = 0-60: overshoot in connectivity; (b) ¢ =0-97; no overshoot;

(c) € =0-30: oscillations,

DE: overshoot

Because the activity in the network is initially
low, dR,/dt is positive and W increases, whereby X
follows the branch ABC until it reaches w,, at which
point X jumps to the upper branch, thus exhibiting
a phase transition from quiescent to activated state.
The activity in the network is then however so
high [i.e. above F~'(¢)], that the neuritic fields
begin to retract (dR,/dt <0) and W to decrease,
whereby X moves along the upper branch from E to
the intersection point. Thus, in order to arrive at an
equilibrium point on the branch DE, a developing
network has to go through a phase in which W is
higher than in the final situation, thus exhibiting a
transient overshoot in W. Recall that W represents
the number of synapses or connections in the
network.

In Section 4, it will be shown that the existence of
a hysteresis loop hinges upon the firing rate function
F having a firing threshold and low but non-zero
values for sub-threshold membrane potentials. The
size of the hysteresis loop depends on a (Fig. 1). A

smaller o results in a larger hysteresis loop and a
larger overshoot in W. Since for small X the increase
of X, starting with W =0 and X = 0, is proportional
to WF(X) [see eqn (1)], and the increase in F(X) is
relatively slow due to F being concave for X <6, X
increases mainly as the result of increasing W. Thus,
the lower the value of F(X) for sub-threshold values
of X (i.e. « small), the higher # should become to
activate the network, resulting in a larger hysteresis
loop [if F(X') = 0 for low X, one would need infinitely
high W to activate the network]. Once F(X) is high,
W may be lower to keep WF(X) high. In other words,
a higher W is needed to trigger activity in a quiescent
network than to sustain it once the network has been
activated.

ABC and EF: no overshoot

If the neuritic fields start retracting already at a
very low level of activity, or only when the level of
activity is very high, no overshoot occurs. In the first
case, the equilibrium point lies on ABC, and the
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neurons stop growing even before W can reach the
critical point w,. In the second case, the equilibrium
point lies on EF, and W will remain increasing after
X has jumped to the upper branch, which is followed
until the ntersection point is reached.

CD: oscillations

An intersection point on this branch is unstable
and results in regular oscillations that follow the
path ABCEDBCEDBC.... The period of these
oscillations is determined by the value of p.

3.2. SIMULATION RESULTS
Approximation

The validity of approximating the global behaviour
of the network by eqn (9) was confirmed by numerical
simulation (Fig. 4). Generally, it was found that this
approximation is good whenever the synaptic
strength ¢ is such that, at the time that (part of) the
network approaches the transition to the activated
state, the connectivity matrix W is a connected graph,
i.e. there is a path from each cell to any other cell (see
Peretto & Niez, 1986). This can be achieved when

(a}

(e)

FiG. 5. Neuritic field sizes. (a) Early stage of development. The same network as in Fig. 6. The numbers correspond to those in Fig. 6.
(b) The same network as in (a) at equilibrium. Neuritic field size depends on local cell density. {c) Network (N = 23, ¢ = (-2} at equilibrium
with cells at grid positions, (d) Network (¥ = 23, ¢ =0-4) at equilibrium with cells at noisy gtid positions. (¢) Network (N = 25) with high
synaptic strength (¢ = 2-5), at equilibrivm. Cells develop into sub-networks. (f) Same network as in () but with ¢ =¢-3,
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¢ is low enough that for the network to become
activated each cell has to be connected to a number
of neighbouring cells. If ¢ is too high, on the other
hand, the network breaks up into sub-networks [see
Fig. 5(¢)], in which the transition to the activated state
may take place at different times, depending on the
local cell density. The phase transition of the whole
network is then fragmented and less clearcut: in
some parts of the network the cells may already be
retracting, while in others they are still growing out.
[In Fig. 4(a) the relative overshoot is larger than in
Fig. 6 because ¢ is smaller.] The approximation is then
no longer valid. Initially, eqn (8) is always a good
approximation, because development starts with dis-
connected cells. At equilibrium, the network is exactly
described by eqn (8), since then X; = F~\(¢), Vi.

Local behaviour

Except for their position, all the cells are exactly
identical. Local vanations.in cell density, however,
suffice to generate a great variability among individ-
ual cells, with respect both to their neuritic field size
at equilibrium [Fig. 5(b), (d)}{f)] and to their develop-
mental course of field size and firing behaviour
(Fig. 6). .

All cells will attain a fixed equilibrium size for
which the input from overlapping cells is such that
F(X;)=¢, Vi. Cells surrounded by a high number of
neighbouring cells tend to become small since a small

neuritic field will already give sufficient overlap with
other cells. In contrast, relatively isolated cells must
grow large neuritic fields in order to contact a suffi-
cient number of cells. One might say that the neuritic
fields adapt to the available space so as to cover it
optimally. Because all cells have the same firing rate
function and ¢, the area of overlap with other cells,
ZY W, will be the same for all cells, This area is given
by [using eqn (6) and eqn (7)) ’
il W F o)t

,Z YT el —F'(e)

In dense parts of the network, the transition to the
activated state takes place earlier than in less dense
parts. Interaction between areas that are, and those
that are not yet activated causes a range of develop-
mental patterns in firing behaviour. A cell bordering
on a cluster of cells with which it has contact at the
moment the cluster makes a phase transition, will
show a pattern like Fig. 6.3, in which the subsequent
relatively rapid decrease in activity within this cluster,
followed by further outgrowth of the border celi,
gives rise to a damped oscillation in firing rate. An
isolated cell making contact with a cluster only after
this cluster has gone through its phase transition (and
to a large extent completed its subsequent decrease in
field sizes and activity levels), will show a pattern like
Fig. 6.6. Since the activity within the cluster remains
essentially constant, this cell will continue to grow out

- (10
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c t %t T Pt ﬁ k|
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0 34 0 50 0 34 0 34
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2 5 |
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FiG. 6. Local behaviour. Same network as in Fig. 4, but with ¢ =04, and ¢ =0-6. C =1 X} 4, = total area of overlap = NW/2c. In the
first row the average behaviour of the network is shown; 1, ..., 6 are individual cells. Note that the relative overshoot in & is less than
in C because (i) C is an area and R, a radius; and (i)} R, contributes to C only if the neuritic fields actually overlap.
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until its overlap is such that F(X,) =« In contrast, a
cell at the heart of such a cluster will display a pattern
like Fig. 6.1.

Network size

Synaptic strength can determine the size of the
resulting network(s) [Fig. 5(e) and (f)]. When ¢ is low,
cells develop into one, connected network, whereas
a high ¢ can result in a development into separate
networks, because contact with fewer cells is sufficient
for F(X,}=¢.

Timing of overshaot

In networks with a high density of cells, overshoot
takes place earlier than in low-density networks
(where neurons have to grow for a longer period of
time in order to make sufficient contacts). Also the
higher the synaptic strength ¢, the earlier the over-

shoot will occur. If activity is totally blocked, on the
other hand, cells keep growing out, and no reduction
in connectivity can take place at all,

4. Robustness

The robustness of the results was tested under
different parameter values and alternative formu-
lations of the model. :

4.1. FIRING RATE FUNCTION

The smaller « in egn (2) is, the steeper F and the
larger the hysteresis loop will be, resulting in a more
pronounced overshoot (see Fig. 1 and section 3.1).
Lowering 8, which translates F to the left, also
increases the firing rate at low X. Thus, without
simultaneously lowering a, this would result in a
smaller hysteresis loop. In Fig. 7(h), a firing rate
function is used with 8 =0-2 and « = 0-05: In fact, F

F X
1 1 1 1

{a) {e)
0 X 1 0 @ 14 0 1 0 1.0
1 1 1 1

(b) 7 i)
0 1 0 15 0 1 0 2.0
1 1 1 1

) (g

e

0 T 1 0 25 0 1 0 0-3
1 1 1 1

id) th)
0 1 0 2 0 1 0 03

Fig. 7. Different firing rate functions (firing rate F versus membrane potential X) together with the curve defined by eqn (9) (X versus
). Except for linear and convex functions, ali firing rate functions give rise to a hysteresis loop. (a) Piece-wise linear. (b) Discrete threshold
(F=001forX <05 F=(1-0—-s5)X+55=001(d) F=X2+5;5 =00025. (e} F = XX + K) +5; K =0-25, 5 =0-0]. (D) Sigmoidal
function based on Michaelis-Menten function (De Boer & Perelson, 1991). F = (1 —s)X3/(6° + X"} +5; 8 = 0-2, s = 0-001. (g) Composite
function. For X €0-3, F = 0-5/(1 + "~ ") with & = 0-055 and § = 0-2. For X > (3, Fis linear. (h) Sigmoidal function according to eqn

(2), with x =005 and # =0-2.
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in eqn (1) may be replaced by any other function
so long as the first part has a positive first and
sccond derivative (or a discrete threshold) and
F(X)>0 for small X including X =0. All these
functions will give rise to hysteresis (Fig. 7). Note that
for overshoot to occur it is not essential that the firing
rate during the phase transition jumps to a high value
relative to its maximum, as it does with eqn (2).
Provided the value of ¢ is changed accordingly, a
function like that of Fig. 7(g) can also be used.

4.2. NEURON MODEL

As can be seen from eqn (9), t is only a scale factor
and has no influence on the shape of the hysteresis
curve.

The general result is also obtained in some alterna-
tive formulations of the neuron model. For example,
in the additive model {Grossberg, 1988)

dx, .
s — X,/ +§ Wy F(X)) an

which lacks the factor (1 — X}) in eqn (1), so X, is
no longer bounded. In analogy with eqn (9) we
obtain,

X
w 754 (12)
which is plotted in Fig. 8(a) [with F according to eqn
(2)). Because F is a sigmoidal, saturating function,
1 — X; may be omitted without losing hysteresis. If, on
the other hand, F is without bound (e.g. a power
function) the saturating factor 1 — X, is necessary for
hysteresis. A modified form of eqn (1) was introduced
by Wilson & Cowan (1972)

dX;

T =X/t +(1-X)F (i WuXJ) (13)

(a)

w

which replaces the sum of non-linear signals in eqn (1)
by a non-linear function of the sum. In analogy with
eqn (9) we obtain,

FOWD) = IX;/TX (14)
and, using eqn (2)
W=@-aln(/f-—t—1)/f 0<F< 1-1:
(15)

which is plotted in Fig. &b).

4.3. NETWORK SIZE

This is not a crucial parameter. The same phenom-
ena are retained, for example, in a two-neuron model

%: —Xl/‘f +(l —Xl)WF(XZ)
(16)
%= — Xyt + (1 - X;)WF(X,).

The conditions for hysteresis and overshoot can now
be formulated in terms of intersecting isoclines
dX,/dt =dX,/ds =0 (Fig. 9). In order for hysteresis
to occur there must be three equilibrium points (two
stable and one unstable) for intermediate values of W,
This can be achieved by sigmoidal isoclines (the form
of the isoclines is determined by F and 1 — X)).

Even a single neuren that is connected only to itself
(Segal & Furshpan, 1990) is capable of displaying
overshoot; in such a case the null-isocline is exactly
eqn (8).

4.4, OUTGROWTH FUNCTION

Parameter § in eqn (6) determines the steepness of
G. The form of the outgrowth function, however,
affects only the specific time course of neurite out-
growth. In fact, any other function & for which G > 0
at low values of F(X;} and G <0 at high values of

(b

w

Fic. 8. Steady-staie dependence (dX/dr = 0) on W for (a) additive model eqn (11) and (b) model according to eqn (13).
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(a)

(c)

0 1

F1G. 9. Isoclines of the two-neuron model for (a) a low, (b) an intermediate and (c) a high value of W. Arrows in (b) indicate the direction
of the trajectories. For intermediate values of W, there exist three steady states, one of which (the middle one) is unstable.

F(X,) may be used. The same results are also obtained
if outgrowth is made directly dependent on X, instead
of on F(X,). The firing rate at which a neuritic field
stabilizes, ¢, is an especially important parameter of
the model in that it determines whether or not
overshoot will occur, and, if so, what its relative size
will be (see Fig. 3).

4.5, CONNECTIVITY

Whether the connectivity matrix W is symmetric
or asymmetric does not play a role in eqn (9).
This implies that modelling axons and dendrites
separately would not affect the main findings. For
example, using eqn (4), with C;; uniformly distributed
between 0-0 and 0-8, yielded similar results as in
the experiment of Fig. 6. The presence of hysteresis
and overshoot also does not depend on the particular
way in which connections between cells are defined.
In Fig. 10, the results are shown of an experiment
in which 4; of eqn (3) is simplified to 4;=1 if
the neuritic fields of neuron i and j overlap, and
A,; =0 if they do not. Even ignoring spatial structure
by randomly filling in W gives the same general
outcome.

e

-

0 20
Number of connections

FiG. 10, The average membrane potential against the average
number of connections. Number of connections = (1/¥) I\ 4,, in
an experiment where A; of eqn (3) is simplified to 4, = 1 if neuren
i and j overlap, and 4; =0 if they do not, With N =25, ¢ =0-05,
€ =065 and p =50 x 1073,

4.6, VARIATION

The results are robust with respect to differences in
intrinsic properties, e.g. by randomly drawing cell
parameters from uniform distributions. Thus, with
uniformly distributed over [0-08, 0-12], T ~ U[7, 10},
8 ~ U[0-4,0:6], ¢~ Ui0-6,08], f~U[008,012],
and ¢ = 0-1 and N = 64, similar results were obtained

.as in Fig. 4. Thus, overshoot can also occur in

networks composed of different cell types.

Although the connectivity structure of the final,
stable network is constrained by the fact that each cell
must have inputs from overlapping cells such that
F(X,)=¢, Vi, no unique solution exists for a given
position of the cells. The initial conditions (R/’s) and
the other cell parameters, which may be different for
different cells, will determine which network of all
possible ones is actually built.

A network in which ¢ is distributed over a range of
values that includes unstable ones, can still show
overshoot as a whole, although the dynamics of
the individual cells may be very complex. We are
currently investigating such possibilities.

4.7, EXTERNAL INPUT
The neuron model with external input becomes
dX;

~(1+ X))}, (17)
where E, and I, are external excitatory and external
inhibitory input, respectively, the inhibitory satu-

ration potential is set to — 1. In analogy with eqn (9)
we obtain

W_f/r~—(l—X’)E+(l+X)T
(1-X)F(X)
which is plotted in Fig. 11 for (E=0015,T=0),

(E = I = 0; normal situation), and (I = 0-008, £ = 0).
Without adjusting «, external excitatory input makes

~1<¥<1l (18)
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1.0

-0-2
0 15

w

Fi1G. 11, Effect of external input. External excitatory input makes
the hysteresis loop smaller, while inhibitory input makes it larger.
Eqn (18) for E=0015 I=0; E=T =0 (normal situation), and
I=0008, £E=0.

the hysteresis loop smaller, while inhibitory input
makes it larger. Thus, with excitatory input, « can be
much lower—or even F(X) such that F(X}=0for X
below a certain value—and still not result in an
excessively large hysteresis loop.

5. Comparison with Empirical Data

The results show some striking similarities, with
respect to development of electrical activity, cell
morphology, and connectivity, with what has been
observed in developing in vitro cultures of dissociated
cells.

The sequence of events in the model, with an initial
phase of neurite outgrowth while electrical activity is
low, an abrupt transition to high activity when con-
nectivity reaches a critical value, and a phase with
neurite retraction thereafter, has also been observed
in cerebellar cultures (Schilling et al., 1991). Purkinje
cell dendrites elongate steadily during the first week
after plating, when electrical activity is still negligible.
As a result of cells becoming integrated into a func-
tional neuronal network, electrical activity increases
dramatically between 7-10 days in vitro. During
this transition period dendrites. cease their linear
growth, retract, and then begin to branch profusely
(in our model implementation, using neuritic fields,
no separate branching events are distinguished).
Coinciding with this period, there is an increase
in [Ca’*],. The notion that electrical activity,
presumably by enhancing [Ca®*},, might regulate
dendritic growth patterns was further supported by
the observation that blockade of electrical activity
resulted in the continued elongation of dendrites as
well as a decrease in [Ca**],. The developmental
sequence described above applied to all. Purkinje

cells, but the actual timing varied for individual
cells. Variations in timing are also observed in the
model, and occur simply as a result of differences
in local density. The model cells are capable at
any time of changing the length. of their neurites
in response to changes in activity. Morphological
changes in Purkinje cells, too, were found to be
reversible, with even mature-looking cells altering
their dendritic growth in response to changes in
activity. Schilling et al. (1991) propose that in the
absence of synaptic input dendrites will continue
to elongate until they encounter active presynaptic
clements. This view is consistent with our model,
in which a disconnected cell will grow out until
it has established sufficient contacts with active
cells (see Section 3.2). It is also consistent with
the synaptotrophic hypothesis of dendritic growth
(Vaughn, 1989), which posits that growth and
branching are initiated and maintained by synapses
formed on growth cones.

As in the simulation model, cultures of dissociated
cerebral cortex cells show a transient overproduction
(overshoot) of synapses during development (Van
Huizen et al., 1985, 1987; Van Huizen, 1986), with a
phase of neurite outgrowth and synapse formation
during the first 3 weeks in vitro being followed by a
substantial elimination of synapses during the week
thereafter (Fig. 12). The development of electrical
activity in these cultures shows a good correspon-
dence with what has been described above for cerebel-
lar cultures (and for the' simulation 'model). With
increasing synaptic density, single neuron firing and
network activity—which takes the form of repetitive
slow field potentials (Corner & Crain, 1972;
Van Ooyen et al., 1992)—abruptly appear within a
window of a few days (Habets et al., 1987). In such
cultures, electrical activity appears to control both
neurite outgrowth and synapse elimination: chronic
blockade of electrical activity enhanced neurite out-
growth (Van Huizen & Romijn, 1987) and prevented
synapse elimination during the fourth week (Van
Huizen et al., 1985). In contrast, chronic intensifica-
tion of activity accelerated the formation of synapses
and hastened the process of synapse elimination by
almost a week (Van Huizen ef ai., 1987) (Fig. 12). The
model responds in a similar way to suppression or
intensification of electrical activity (see Section 3.2,
Timing of overshoot).

Different cell types in the rat cerebral cortex show
different growth curves with respect to radial distance
and total dendritic length (Uylings et af., 1990}, with
cells displaying clear, minor or no overshoot at all.
Some of these curves show a clear resemblance to the
ones observed in the model.
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F1G. 12. Cultures of dissociated cerebral cortex cells show a transient overproduction of synapses (control). Chronic blockade of activity
(by TTX) largely prevents synapse elimination, whereas intensification (PTX) accelerates the process. After Van Huizen (1986).

6. Conclusions and Discassion

Many of the processes that play a role in network
development are dependent upon the electrical activity
of the neurons and network itself, so that a tight
coupling exists between network formation and net-
work activity. In this study, we have examined the
consequences for network ontogeny of one of these
processes, namely activity-dependent neurite out-
growth. We have demonstrated that the very presence
of this mechanism in combination with another el-
ementary neuronal properiy—a non-linear neuron
response function, i.e. a threshold for action potential
generation—is sufficient to generate overshoot
phenomena with respect to connectivity. The results
are robust under: different firing raie functions {(pro-
vided they have a type of firing threshold and low but
non-zero values for sub-threshold membrane poten-
tials, i.e. spontancous activity); variance among neur-
ons in all parameters; different neurite outgrowth
functions (provided a high level of electrical activity
results in retraction and a low level in outgrowth);
symmetric versus asymmetric connectivity matrix; the
way in which connections are defined; network size
and different neuron models. The question of whether
other processes such as trophic action and inhibition
might interfere with the generation of overshoot was
not addressed in this study. At present we are studying
the effects of inhibitory neurons on network develop-
ment, the preliminary results of which show that the
general findings of this article remain completely true
for networks with inhibitory circuits.

The mechanism underlying the generation of over-
shoot in this simple model may provide part of

the explanation for overshoot phenomena in the de-
veloping nervous system, al least for those which have
been observed in tissue cultures of dissociated cells. In
such cultures, the sequence of events corresponds
closely to that observed in the simulation model.

It should be emphasized that other, more realistic,
descriptions of neurite outgrowth and synaptogenesis
(e.g. with individual neurites instead of a circular
neuritic field, and possibly some form of conservation
of, or limit upon, the total numbers of synapses per
cell rather than simply assuming that the larger the
overlap of ncuritic fields, the more synapses will
be made} are merely different mappings onto the
connectivity matrix W. Although this could affect the
particular network structure, overshoot would still
take place.

The neuritic field size of the model cells adapts to
the local cell density, resulting in small fields in dense
areas and larger ones in sparse areas. In this respect,
it is interesting that the dendritic fields of ganglion
cells, the cell bodies of which are arrayed in a regular
mosaic, have been reported to achieve a uniform
coverage of the retina so that every point of the visual
space is ““seen” by at least one cell (Wiissle et al., 1981).
From these observations it was inferred that some
kind of growth mechanism must exist whereby local
interactions among cells regulate dendritic field size.
Activity~dependent outgrowth may be a candidate fur
such a mechanism,

Hysteresis may provide a mechanism by which
overshoot phenomena in general can be understood.
To illustrate this, consider the following variant of the
model. Suppose that cell death is more likely at (very)
high levels of electrical activity, and that neurons



40 A. VAN OOYEN AND J. VAN PELT

(whose neuritic fields are now taken to be constant)
are produced at a given source, transported and
incorporated into a network during development. As
before, neurons become connected when their neuritic
fields overlap. At a given cell density, the network will
become activated and start losing cells if the resulting
activity is too high. Because of hysteresis, a higher cell
density is necessary to activate the network than to
sustain it once activity has been initiated, thus giving
ris¢ to a reduction in cell number. Such a transient
overproduction of cells has been observed in the
development of, for example, the suprachiasmatic
nucleus (Swaab er al., 1990). Another variant of the
model would be one in which the neuritic fields are
more or less constant and (partly) overlapping, while
it is now the formation of new synapses or the
strengthening of older ones which is activity-depen-
dent. This would lead to exactly the same results, with
overshoot in number of synapses or synaptic strength,
respectively.

For some values of ¢, the firing rate at which a given
neuritic field remains constant, the model can generate
sustained oscillations in overall activity (and connec-
tivity). The pericd of these oscillations is determined by
p, the rate of outgrowth of neuritic fields or, in the
alternative formulations of the model, the rate at which
synapses are formed/destroyed or existing ones are
strengthened/weakened. Since these changes can occur
on a time scale of hours, this mechanism might provide
a possible explanation for the occurrence of slow
rhythmic activity in various brain areas (for example,
circadian rhythms in the suprachiasmatic nucleus).

With respect to overshoot in connectivity, there
may exist a parallel with the developing immune
system, In the immune system, which may function as
a network (Jerne, 1974), a high idiotypic connectivity
(the number of clones with which a given clone
interacts) is found during early ontogeny (Holmberg
et al., 1986). A possible explanation might be that
highly connected clones, which become over-stimu-
lated or suppressed if clones are large, can only be
maintained during early life when all clones are small
and the network has not yet filled with antibodies
{(De Boer & Perelson, 1991). In analogy, neurons
in our network can only maintain a high number
of connections during early development when the
network is not yet “filled” with activity. Once
the network is activated, these neurons become
over-stimulated and subsequently lose some of their
connections. .

Overshoot phenomena may also be involved in
learning. Doyle er ai. (1992) presented evidence to
suggest that information storage during learning may
be based on connectivity changes mediated by a

replay of early developmental events, In this concept,
information acquisition may induce a transient over-
production of synaptic contacts in a given network,
followed by an activity-dependent selection to yield a
new circuitry.

The present study might also have relevance for
understanding the ontogenetic origins of epilepsy.
If, for whatever reason, activity is blocked during
development, insufficient reduction in connectivity
will result. This could lead in adulthood, assuming
that pruning of connections is largely restricted to a
“critical period”, to a network prone to epileptic-like
activity because of its abnormally high degree of
connectivity. Interestingly, Ben-Ari & Represa (1990)
have suggested that use-dependent sprouting may
play a role in epilepsy.

Damaging a proportion of the model cells results in
increased neurite outgrowth of the remaining cells
until all the cells have the same activity level as before.
This is reminiscent of what happens following early
prefrontal cortex lesions in rats. In such animals, an
increase in dendritic arborization is found—possibly
accompanied by synapse formation—which seems to
correlate with the occurrence of behavioural sparing
of function (Kolb & Gibb, 1991).

If the level of spontancous activity is too low (or the
synapses too weak) for the network to become acti-
vated by its intrinsic activity, neurites would continue
growing out until at some stage during development
the network may become activated by external input
(e.g. sensory input). This could then result in retrac-
tion of neurites, the network being hyperactive due to
its high degree of connectivity. Such a scenario would
also give rise to overshoot. Age-related decreases in
spine density and in total length of dendrites have
indeed been reported for the development of Purkinje
cells in vivo (Pentney, 1986). It may be hypothesized
that changes in levels of electrical activity play a role
in these morphological alterations.

The intracellular calcium concentration ([Ca®*], ) is
likely to be one of the primary variables controlling
neurite outgrowth. One of the factors that can change
[Ca**).,, and hence neurite outgrowth, is electrical
activity, which, in turn, is dependent upon network
connectivity and network dynamics. Therefore, the
mechanisms regulating [Ca’*],, may be major deter-
minants of entire patterns of neuronal circuitry, as
was suggested by Kater er al. (1988). Indeed, with the
help of a relatively simple model of a developing
neural network we have shown that activity-depen-
dent neurite outgrowth can have a profound effect on
network structure during development in that.it gen-
erates pronounced overshoot phenomena with respect
to connectivity.
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APPENDIX

Derivation of eqn (8). Taking the average over i in eqn (7) and writing X, = ¥+ AX,, with X =(1/N)ZV X,

yield

1-X
N
Take ZY W, = NW , and write W,= W, + AW,

i

0=—X/t +

0=—X/r +(1 —X’)iF(Xj)W,j—%iF(Xj)iAX,-A,. w,.

If AX; and A, W are uncorrelated or smail

05 — Xt +(1— DY FX)T,.

N N 1 N N
Y (X)X Wy— 5 Y FX) Y AW,
J { i i

(A1)

(A.2)

(A.3)

Take F(X;) = F(X)+ AX,F'(X)+---, and writt W=(1N)Z} W, W,= W+ AW,

N
Ox X/t +(1-DFDW + (1 - DF (DL AX AW +- -

(A4)

where W=ZY W = (1/N) Z} W,. If, again, AX; and AW, are uncorrelated or small, and ignoring higher order

terms in the Taylor expansion

0~ — X/t + (1 - HWF(X).



