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Homeostatic Structural Plasticity Can
Build Critical Networks

Arjen van Ooyen and Markus Butz-Ostendorf

Abstract Many neural networks, ranging from in vitro cell cultures to the neocortex1

in vivo, exhibit bursts of activity (“neuronal avalanches”) with size and duration dis-2

tributions characterized by power laws. The exponents of these power laws point to a3

critical state in which network connectivity is such that, on average, activity neither4

dies out nor explodes, a condition that optimizes information processing. Various neu-5

ral properties, including short- and long-term synaptic plasticity, have been proposed6

to underlie criticality. Reviewing several model studies, here we show that during7

development, activity-dependent neurite outgrowth, a form of homeostatic structural8

plasticity, can build critical networks. In the models, each neuron has a circular neu-9

ritic field, which expands when the neuron’s average electrical activity is below a10

homeostatic set-point and shrinks when it is above the set-point. Neurons connect11

when their neuritic fields overlap. Without any external input, the initially discon-12

nected neurons organize themselves into a connected network, in which all neurons13

attain the set-point level of activity. Both numerical and analytical results show that14

in this equilibrium configuration, the network is in a critical state, with avalanche15

distributions described by precisely the same power laws as observed experimen-16

tally. Thus, in building critical networks during development, homeostatic structural17

plasticity can lay down the basis for optimal network function in adulthood.18
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2 A. van Ooyen and M. Butz-Ostendorf

1 Introduction22

Experimental studies have observed an intriguing dynamical state characterized by23

so-called neuronal avalanches in a variety of neural systems, including acute and24

cultured cortical slices [5, 6], developing cultures of dissociated cortex cells [48],25

the developing retina [30], the developing cortex in vivo [25] and the adult neocortex26

in vivo [49]. Neuronal avalanches are spontaneous bursts of activity that have power-27

law size and duration distributions [5, 6]. Most studies report that the number of28

avalanches of a given size (e.g., in terms of number of electrodes on which activity29

is recorded) decreases proportionally to the size to the power −1.5, and that the30

number of avalanches of a given duration declines proportionally to the duration to31

the power −2 [5, 25]. Power laws typically emerge in systems when they are critical,32

meaning that they are close to a transition in behavior [42]. Simple mathematical33

models have shown [78] that power laws with exponents −1.5 and −2 can arise34

if connectivity is such that every neuron that fires an action potential causes, on35

average and independently of network activity [38], one other neuron to fire. With36

this connectivity, network activity, on average, neither dies out nor blows up over37

time.38

How do networks develop and maintain such a critical pattern of connectivity?39

Reviewing several model studies, here we show that activity-dependent outgrowth of40

neurites (axons and dendrites) can self-organize a network into a critical state. During41

development, electrical activity controls the elongation, branching and retraction of42

neurites [34, 44, 60, 77] by modifying the level of intracellular calcium. Calcium,43

which enters the cell through voltage-gated channels, is the principal regulator of44

the growth cone, a specialized structure at the tip of outgrowing neurites [24, 34, 37,45

40]. A high intracellular calcium concentration, caused by membrane depolarization,46

a high neuronal firing rate, or stimulation by excitatory neurotransmitters, arrests47

neurite outgrowth or even causes retraction. Conversely, a low calcium concentration,48

due to a low firing rate, hyperpolarization, or inhibitory neurotransmitters, promotes49

neurite elongation [16, 23, 32, 45, 46]. Thus, the way in which electrical activity50

modulates neurite outgrowth contributes to maintaining neuronal electrical activity51

at a stable average level (homeostasis). When the electrical activity of a neuron52

is above a desired value (homeostatic set-point) its neurites retract, breaking-up53

synaptic connections and so reducing neuronal activity. Conversely, when activity is54

below this value, neurites grow out, making new synaptic connections and so raising55

the neuron’s activity.56

Activity-dependent neurite outgrowth is a form of homeostatic structural plastic-57

ity [14, 15, 22], with structural plasticity defined as encompassing all the structural58

adaptations, such as neurite outgrowth and changes in dendritic spine numbers, that59

lead to the formation or deletion of synapses [14, 69]. Structural plasticity can con-60

nect previously unconnected neurons, disconnect neurons, or change the number of61

synapses by which neurons are connected. In contrast, synaptic plasticity is defined62

as a change in the strength of existing synapses. Hebbian synaptic plasticity changes63

synapse strength depending on the correlation between pre- and postsynaptic activ-64
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Homeostatic Structural Plasticity Can Build Critical Networks 3

ity [8, 28], whereas synaptic scaling (homeostatic synaptic plasticity) modifies the65

strengths of all the cell’s incoming synapses so as to stabilize neuronal activity around66

some set-point value [63].67

One of the first models of homeostatic structural plasticity is the neuritic field68

model of activity-dependent neurite outgrowth [70–72, 75]. In this model, the neurite69

extensions of each neuron are represented by a circular neuritic field, which expands70

when the neuron’s electrical activity is below a homeostatic set-point and shrinks71

when the neuron’s activity is above the set-point. Neurons connect synaptically when72

their neuritic fields overlap.73

In this Chapter, we give a brief overview of the original neuritic field model,74

followed by a review of studies [2, 38, 61] that have employed the model to examine75

the development of criticality. The results show that simple, homeostatic growth rules76

can construct neural circuits with critical, power-law behavior.77

2 The Neuritic Field Model78

2.1 Model at a Glance79

In constructing the neuritic field model, we were inspired in part by developing80

cultures of dissociated cortex cells, in which initially disconnected cells assemble81

themselves, without external input, into a synaptically connected network by neu-82

rite outgrowth and synaptogenesis [43, 48, 65, 76]. In the model, growing neurons83

are described as expanding neuritic fields, representing both axons and dendrites.84

Neurons become synaptically connected when their neuritic fields overlap, with a85

connection strength proportional to the area of overlap. The outgrowth of each neu-86

ron depends on its own level of electrical activity, as follows. The neuritic field87

expands when the neuron’s electrical activity is below a certain set-point and shrinks88

when activity is above this set-point. Thus, a reciprocal influence exists between89

electrical activity (fast dynamics) and outgrowth (slow dynamics): electrical activ-90

ity determines outgrowth, while in turn outgrowth alters connectivity and conse-91

quently activity. Through these interactions, the initially disconnected neurons orga-92

nize themselves into a synaptically connected network, guided only by the activity93

generated by the network itself; there is no external input.94

2.2 Neuronal Activity95

Neuronal electrical activity is described by the shunting model [26]. In this model,96

excitatory inputs drive the membrane potential towards a maximum (the excitatory97

saturation potential), while inhibitory inputs drive the membrane potential towards98
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4 A. van Ooyen and M. Butz-Ostendorf

a minimum (the inhibitory saturation potential). For a network containing only exci-99

tatory cells, the model becomes [70]:100

dXi

dt
= − Xi

τX
+ (1 − Xi )

N∑

j=1

Wi j F
(
X j

)
(1)101102

where Xi is the membrane potential of neuron i, t is time, τX is the membrane103

time constant, Wi j ≥ 0 is the connection strength between presynaptic neuron j and104

postsynaptic neuron i, F
(
X j

)
is the firing rate of neuron j, and N is the total number of105

neurons. The term (1 − Xi ) implies that inputs from other cells drive the membrane106

potential towards a saturation potential of 1. The firing rate, with its maximum set107

to 1, is a sigmoidal function of the membrane potential:108

F
(
X j

) = 1

1 + e(θ−X j)/α
(2)109110

where α determines the steepness of the function and θ represents the firing thresh-111

old. The low firing rate for sub-threshold membrane potentials reflects spontaneous112

neuronal activity.113

2.3 Outgrowth and Connectivity114

Neurons are placed at random positions on a two-dimensional surface. Each neuron115

has a circular neuritic field, the radius of which is variable. When the fields of116

neurons i and j overlap, both neurons become connected with a strength Wi j = σ Ai j ,117

where Ai j = A ji is the area of overlap, representing the total number of synapses118

formed reciprocally between neurons i and j; and σ is a constant of proportionality,119

representing the strength of a single synapse.120

The change in neuritic field size depends on the neuron’s own firing rate:121

dRi

dt
= ρG[F(Xi )] (3)122123

where Ri is the radius of the neuritic field of neuron i, and ρ determines the rate of124

outgrowth. The outgrowth function G is defined as125

G[F(Xi )] = 1 − 2

1 + e[Ftarget−F(Xi )]/β
(4)126127

where Ftarget is the homeostatic set-point, i.e., the value of F(Xi ) for which G = 0;128

andβ determines the steepness of the function. Equation 4 implements that depending129

on the value of F(Xi ), a neuritic field grows out [G > 0 if F(Xi ) < Ftarget], retracts [G130

< 0 if F(Xi ) > Ftarget] or remains constant [G = 0 if F(Xi ) = Ftarget]. In biological131
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Homeostatic Structural Plasticity Can Build Critical Networks 5

neurons, the effect of electrical activity on neurite outgrowth is mediated by calcium132

[24, 34, 37, 40], with the concentration of intracellular calcium acting as indicator133

of the neuron’s firing rate [2, 3, 58].134

2.4 Network Assembly, Overshoot and Homeostasis135

The neurons are initialized with no or small neuritic fields, so most neurons are136

initially disconnected or organized in small, isolated clusters (Fig. 1a). Consequently,137

neuronal firing rates F(Xi ) are below the homeostatic set-point Ftarget, and neuritic138

fields start expanding. As the neurons grow out, they begin to form more and stronger139

connections, linking neurons together and slowly raising the level of activity in140

the network. At some degree of connectivity, network activity abruptly jumps to141

a much higher level (Fig. 1d), but activity is then so high that F(Xi ) > Ftarget.142

As a result, neuritic field size and connectivity start decreasing and activity drops.143

As neurons adjust the size of their neuritic fields, and react to the adjustments of144

their neighbors, the network eventually reaches a stable equilibrium in which the145

connectivity between cells is such that for all cells F(Xi ) = Ftarget and neuritic fields146

and connectivity no longer change (Fig. 1b). The neurons thus self-organize, via a147

transient phase of high connectivity (overshoot) (Fig. 1c), into a stable network with148

network-wide homeostasis of activity. They thereby adapt to the local cell density,149

with neurons acquiring small neuritic fields in areas with a high cell density and large150

fields in areas with a low cell density (Fig. 1b).151

The assembly of initially unconnected model neurons into a connected network152

strongly resembles development in cultures of dissociated cortex cells, with respect153

to both activity and connectivity [27, 55, 57, 65, 66]. The first three weeks in vitro154

show a phase of steady neurite outgrowth and synapse formation [65, 66], with155

neuron firing and network activity abruptly appearing within a window of a few days156

[27] and network structure exhibiting a transition from local to global connectivity157

[57]. In the next week, this is followed by a substantial elimination of synapses until158

a stable connectivity level is reached [65, 66].159

2.5 Analytical Relationship Between Activity160

and Connectivity161

The relationship between activity and connectivity, and the changes in activity and162

connectivity during development, can be predicted directly from Eq. 1 [70]. For a163

given connectivity matrix W, the equilibrium points of Xi are solutions of164

0 = − Xi

τX
+ (1 − Xi )

N∑

j=1

Wi j F
(
X j

)
(5)165166
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6 A. van Ooyen and M. Butz-Ostendorf

200 

0 5 x 105 200 

1 

0 Time

(a) (b)

(c) (d)

Fig. 1 Network assembly. In this example of the original neuritic field model [70, 72], all cells
are excitatory. a Early stage of network development. Neuritic fields are small, connectivity is low,
and cells have a low level of electrical activity. b Network at equilibrium. The electrical activity of
all cells is at the homeostatic set-point, and the neuritic field sizes remain constant. c Development
of network connectivity Â = 1

2

∑N
i=1, j=1 Ai j = total area of overlap (see Sect. 2.3) over time.

d Network-averaged membrane potential X against network connectivity Â. Electrical activity is
initially low, so connectivity increases. When connectivity is strong enough, activity abruptly jumps
to a much higher level. This level exceeds the homeostatic set-point, so connectivity and activity
then decrease until activity is at the homeostatic set-point. Parameters of the model: τX = 8,
ρ = 2.5 × 10−6, θ = 0.5, α = 0.1, β = 0.1, Ftarget = 0.6, σ = 0.4 (a and b) or 0.1 (c and d), N =
64. The value of the outgrowth rate ρ is small enough for connectivity to be quasi-stationarity on
the time scale of membrane potential dynamics (Figure reproduced, with permission, from [70])

If all cells have the same Ftarget and the variations in Xi are small relative to the167

average membrane potential X of the network, then 0 = −X/τX +(
1 − X

)
W F

(
X

)
,168

where W is the average connection strength. Rewriting this equation gives169

W = X/τX(
1 − X

)
F

(
X

) 0 ≤ X < 1 (6)170171

Equation 6, which defines a manifold in (W , X) space (Fig. 2), provides the172

equilibrium value(s) of X for a given, fixed value of W (i.e., a bifurcation diagram).173

Equilibrium states on branch CD of the manifold are unstable with respect to X ;174

equilibrium states on branches ABC and DEF are stable. Because changes in W are175

slow, being caused by outgrowth and retraction of neuritic fields (Eq. 3), W can be176

considered quasi-stationary on the time scale of membrane potential dynamics. That177
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Homeostatic Structural Plasticity Can Build Critical Networks 7

Fig. 2 Relationship between activity and connectivity. In the original neuritic field model [70,
72], the manifold of Eq. 6 defines the equilibrium value(s) of the network-averaged membrane
potential X for a given, fixed value of the network-averaged connectivity W in a purely excitatory
network. Equilibrium values on branch CD are unstable with respect to X ; equilibrium values on
branches ABC and DEF are stable. The intersection point with the line X = F−1(ε), where F−1

is the inverse of the firing rate function and ε = Ftarget (see Eqs. 2–4), is the equilibrium state of
the whole system, at which W remains constant. See further Sect. 2.5 (Figure reproduced, with
permission, from [70])

is, in the time that X relaxes to its equilibrium value, W hardly changes. In other178

words, at any given value of W , X is at its equilibrium value. Therefore, the slow179

evolution of X , i.e., the changes in X that are brought about by changes in W , take180

place along the manifold.181

If for all cells F(Xi ) = Ftarget, the neuritic fields, and therefore W , remain con-182

stant. Thus, at the intersection point with the line X = F−1
(
Ftarget

)
(F−1 is the inverse183

of F), W remains constant; above and below that line, it decreases and increases,184

respectively. Consider, for example, an intersection point on branch DE (Fig. 2).185

During development, connectivity and activity are initially low, so W increases, and186

X follows the branch ABC until it reaches C, at which point it jumps to branch DEF.187

However, X is then so high that the neuritic fields begin to retract and W to decrease188

until X , moving along branch DEF, reaches the intersection point. Thus, in order to189

arrive at an intersection point on branch DE, a developing network has to go through190

a phase in which connectivity is higher than in the final situation (overshoot; see191

Sect. 2.4). If the intersection point is on branch CD, connectivity and activity will192

oscillate on the time scale of growth [71]. No overshoot or oscillations occur if the193

intersection point is on branch ABC or EF.194
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8 A. van Ooyen and M. Butz-Ostendorf

2.6 Inhibition and Further Results195

Simulation studies revealed that also in networks with both excitatory and inhibitory196

cells (mixed networks), all cells generally achieve homeostasis of activity, just as they197

do in purely excitatory networks [72]. Overshoot of connectivity can be enhanced198

in mixed networks [72]. Interestingly, although there are no intrinsic differences in199

growth rules between excitatory and inhibitory cells in the model, the cells nev-200

ertheless differentiate, with the neuritic fields of inhibitory cells becoming smaller201

than those of excitatory cells [72]. Furthermore, both purely excitatory and mixed202

networks are capable of self-repair after lesions. Following cell loss, the remaining203

cells, especially those in the neighborhood of the deleted cells, lose connections and204

undergo a drop in activity, triggering neuritic field outgrowth and formation of new205

connections, until activity is restored at the homeostatic set-point [72]. In addition,206

the model can account for the development of intrinsic firing patterns [1], the develop-207

ment of retinal mosaics [20], developmental changes in network-wide activity bursts208

[35], and developmental transitions in cognition [51, 52]. For extensive reviews of209

the model, see [68, 74].210

3 Criticality in the Neuritic Field Model211

3.1 Model212

Abbott and Rohrkemper [2] used a slightly modified version of the original neuritic213

field model [70, 72]. In their variant of the model, neuronal activity is governed by a214

Poisson spiking model (rather than being described by a firing rate) and neuritic field215

outgrowth is dependent on the neuron’s internal calcium concentration (rather than216

directly on the neuron’s firing rate). In the purely excitatory network they investigated,217

neuronal activity is generated by a Poisson spiking model based on a computed firing218

rate. The firing rate Fi of neuron i is described by219

dFi

dt
= F0 − Fi

τF
(7)220221

where F0 is a spontaneous background rate and τF is the time constant with which Fi222

relaxes to F0. At every time step 	t, neuron i fires an action potential with probability223

Fi	t . After a neuron fires, it cannot fire again for a refractory period tref. Whenever224

another neuron j fires an action potential, Fi is incremented, Fi → Fi +σ Ai j , where225

Ai j is the area of overlap between neurons i and j, and the constant σ represents226

synaptic strength.227

The average level of activity of neuron i is monitored by the neuron’s internal228

calcium concentration Ci , which is incremented whenever neuron i fires, Ci →229

Ci + 1, and decays to zero otherwise,230
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Homeostatic Structural Plasticity Can Build Critical Networks 9

dCi

dt
= −Ci

τC
(8)231232

with time constant τC . The calcium concentration determines the change in the neu-233

ritic field radius Ri of neuron i:234

dRi

dt
= ρ

(
Ctarget − Ci

)
(9)235236

where ρ is the rate of outgrowth. If neuronal activity and thus calcium concentration237

are low (Ci < Ctarget), neuron i grows out, leading to more excitatory connections and238

hence higher activity. Conversely, if neuronal activity and calcium concentration are239

high (Ci > Ctarget), the neuron retracts, reducing connectivity and lowering activity.240

In this way, each neuron grows out or retracts to try to reach the target level of calcium241

concentration (Ci = Ctarget).242

3.2 Results243

In a similar manner to that described for the original model (Sect. 2.4), the neurons244

grow out and assemble themselves into a synaptically connected network. In the245

equilibrium state, the calcium concentrations of the neurons remain close to Ctarget and246

the radii Ri of the neuritic fields are nearly constant, with only small fluctuations over247

time. In the equilibrium configuration, the pattern of network activity was analyzed248

in terms of size and duration of networks bursts [2]. A network burst or avalanche was249

defined as an event in which spiking is observed in at least one neuron for a contiguous250

sequence of time bins (tbin = 10 ms), bracketed before and after by at least one bin251

of silence in all neurons. The results of the analysis (Fig. 3) were interpreted to show252

that burst size and burst duration in the model follow power-law distributions (i.e.,253

linearity in a log-log plot), characteristic of critical dynamics. The occurrence of254

bursts of a given size (as measured in number of action potentials generated during255

a burst) was described as following a power-law with exponent −1.5 (Fig. 3a), and256

the number of bursts of a given duration as a power-law with exponent −2 (Fig. 3b),257

similarly to what had been observed in cultures of cortical slices [5, 6] and dissociated258

cortex cells [48]. The property of the model that neurons grow out when activity is259

low and withdraw when activity is high forces the network to find a middle ground260

between all-to-all connectivity (producing excessive activity) and local connectivity261

(producing insufficient activity). This middle-ground in connectivity, with a stable262

average level of activity, was believed to underlie the generation of critical dynamics263

in the model.264

The small fluctuations in Ri that are still present in the equilibrium state are not265

important for the size and duration distributions: shutting off growth completely266

(ρ = 0) once equilibrium is reached did not make any noticeable difference to the267

results. The distributions do also not crucially depend on the exact values of the268
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10 A. van Ooyen and M. Butz-Ostendorf

Fig. 3 Burst size and duration. Burst size and duration in the model by Abbott and Rohrkemper
[2]. a Histogram of the fraction of bursts (events) with different numbers of spikes. The line indicates
−1.5 power. b Histogram of the fraction of bursts with different durations. The line indicates −2
power. Parameters of the model:F0 = 0.1 Hz, τF = 5 ms, 	t = 1 ms, tref = 20 ms, σ = 500 Hz,
τC = 100 ms, ρ = 0.002 s−1, Ctarget = 0.08, total number of neurons = 100 (Figure reproduced,
with permission, from [2])

model parameters. The value of Ctarget influences the exponents of the power laws269

with which the distributions are described, but only values much higher or lower270

than the one used in Fig. 3 lead to essentially different distributions. Much higher271

values of Ctarget yield flat distributions of burst size and burst duration, whereas much272

smaller values lead to a shortage of large, long-lasting bursts.273

4 Analytical Proof of Criticality in the Neuritic Field Model274

Being a relatively small simulation study, the work by Abbott and Rohrkemper275

[2] could not claim conclusively that the neuritic field model is capable of building276

critical circuits. Recently, Kossio et al. [38] proved analytically that a slightly different277

version of the model used by Abbott and Rohrkemper [2] generates activity dynamics278

characterized by power-law avalanche distributions. In their model, neuronal activity279

is described by a stochastic, continuous-time spiking model that is very similar to280

the one used in Abbott and Rohrkemper [2], with an instantaneous firing rate Fi of281

neuron i and a low spontaneous firing rate F0 but without a refractory period (but282

see below). As in Abbott and Rohrkemper [2], a spike from neuron j increments Fi283

by σ Ai j , where Ai j is the area of overlap between neurons i and j, and the constant284

σ represents synaptic strength. Without an input spike, Fi decays exponentially to285

F0 with time constant τF (Eq. 7). A difference from Abbott and Rohrkemper [2] is286
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Homeostatic Structural Plasticity Can Build Critical Networks 11

Fig. 4 Avalanche size and duration in the model by Kossio et al. [38]. a Analytical size distribution
(blue) and simulation results (gray) for a subcritical state (Ftarget = 0.04 Hz), and analytical size
distribution (red) and simulation results (black) for a near-critical state (Ftarget = 2 Hz) b Analytical
duration distribution (green) and simulation results (gray) for the subcritical state, and analytical
duration distribution (orange) and simulation results (black) for the near-critical state. Red line shows
a closed-form approximation. Parameters of the model: F0 = 0.01 Hz, τF = 10 ms, σ = 500 Hz,
ρ = 10−6 s−1, total number of neurons = 100. For the subcritical state, a time bin tbin of 30 ms was
used, and for the near-critical state a tbin of 45 ms (Figure reproduced, with permission, from [38])

that the change in neuritic field radius Ri of neuron i depends directly on its firing287

rate Fi . In the model, Ri increases linearly with rate ρ between spikes of neuron i288

and decreases with a constant amount ρ/Ftarget when neuron i fires a spike. Thus,289

on average, Ri increases if the time-averaged firing rate Fi < Ftarget, decreases290

if Fi > Ftarget, and remains constant if Fi = Ftarget. The network grows into a291

stationary state in which all neurons have an average firing rate of Ftarget. Kossio292

et al. [38] showed mathematically that in this state, provided Ftarget � F0, avalanche293

size follows a power-law distribution with exponent −1.5, and avalanche duration,294

for large durations, a power-law distribution with exponent −2 (Fig. 4).295

Numerical simulations further demonstrated that halting growth (ρ = 0) in the296

stationary state so that small connectivity fluctuations are eliminated has no effect297

on the avalanche statistics (as in [2]) and that introducing a biologically plausible298

refractory period has only a moderate effect on the statistics. However, if the refrac-299

tory period becomes too long, the power laws begin to break down. This last finding,300

together with the fact that in Abbott and Rohrkemper [2] Ftarget (based on Ctarget)301

is not much larger than F0, may explain the deviations from power law in Fig. 3302

(generated with refractory period tref = 4τF ) [38].303
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12 A. van Ooyen and M. Butz-Ostendorf

5 Criticality in a Network with Excitatory and Inhibitory304

Cells and Separate Axonal and Dendritic Fields305

5.1 Model306

In the model by Tetzlaff et al. [61], in contrast to the original neuritic field model307

[70, 72] and the models by Abbott and Rohrkemper [2] and Kossio et al. [38], each308

neuron i has two separate circular neuritic fields, one describing the size of its axon309

(radius Raxo
i ) and one the size of its dendrites (radius Rden

i ). The change in Rden
i310

depends in the same way on the internal calcium concentration Ci as in the previous311

two models:312

dRden
i

dt
= ρden

(
Ctarget − Ci

)
(10)313314

where ρden is the rate of dendritic outgrowth and Ctarget is the target calcium concen-315

tration. However, the change in Raxo
i is given by316

dRaxo
i

dt
= −ρaxo

(
Ctarget − Ci

)
(11)317318

where ρaxo is the rate of axonal outgrowth. Thus, Raxo
i increases when Ci > Ctarget319

and decreases when Ci < Ctarget, reflecting experimental observations that axons320

require electrical activity to grow out [53, 79].321

The network may contain both excitatory and inhibitory neurons. In the neuron322

model, which is similar to the one used in Abbott and Rohrkemper [2], the membrane323

potential Xi (limited by a hard bound to 1) of neuron i is given by324

dXi

dt
= X0 − Xi

τX
(12)325326

where X0 is the resting potential and τX is the time constant with which Xi relaxes to327

X0. At every time step, neuron i fires an action potential when Xi > 
i , where 
i is328

a uniformly distributed random number between 0 and 1 (drawn at each time step).329

After a neuron has fired, it is refractory for four time steps. Whenever another neuron330

j fires an action potential, Xi is incremented, Xi → Xi +σ j Ai j , where Ai j represents331

the overlap between the axonal field of presynaptic neuron j and the dendritic field of332

postsynaptic neuron i; and σ j is a constant representing synaptic strength, defining333

whether presynaptic neuron j is excitatory (σ exc
j > 0) or inhibitory (σ inh

j < 0).334

As in Abbott and Rohrkemper [2], the calcium concentration Ci of neuron i is335

incremented whenever neuron i fires an action potential, Ci → Ci + γ , where γ is336

the increase in calcium concentration. Between action potentials, Ci decays to zero337

with time constant τC (Eq. 8). All the differential equations are solved by the Euler338

method, with an interval length of one simulated time step.339
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Homeostatic Structural Plasticity Can Build Critical Networks 13

5.2 Results340

During the early stage of development, all cells are taken to be excitatory. Initially,341

the axonal and dendritic fields of the cells are so small that no connections exist.342

Consequently, neuronal activity and calcium concentrations are low, triggering den-343

dritic field outgrowth and a slow build-up of connections, together with a gradual rise344

in neuronal activity (Phase I) (Fig. 5). At a certain point in time, neuronal activity345

increases rapidly towards a maximum, in parallel with a shrinkage of dendritic fields346

and an expansion of axonal fields, because of the calcium concentrations rising above347

Ctarget (Phase II, similar to the overshoot phase described in Sect. 2.4). During Phase348

II, inhibitory neurons are introduced by changing 20% of all neurons into inhibitory349

ones (synaptic strength σ < 0), reflecting the developmental switch of the neurotrans-350

mitter GABA from excitatory to inhibitory [7, 33]. Introducing inhibition dampens351

neuronal activity. In the last stage of development, the system reaches an equilibrium352

state in which neuronal activity fluctuates around a stable value (homeostasis) and353

the calcium concentrations remain close to Ctarget (Phase III).354

In each developmental phase, the pattern of network activity was analyzed in terms355

of the number of action potentials contained in networks bursts [61]. As in Sect. 3.2,356

a network burst or avalanche was defined as a period of network activity between357

two time bins in which all neurons are silent. In the figures showing frequency of358

avalanches against number of spikes in an avalanche, the straight dashed lines indicate359

the best power-law fit (Fig. 6). As before, if an avalanche distribution matches the360

power-law line, it is called critical. An over-representation of large avalanches is361

referred to as supercritical, and an under-representation as subcritical [4, 47].362

Fig. 5 Developmental phases. Network development in the model by Tetzlaff et al. [61] shows
three distinct phases: Phase I, in which synaptic connectivity and neuronal activity gradually
increase; Phase II, in which connectivity and activity abruptly rise towards a maximum, followed by
pruning of connectivity and a lowering of activity; and Phase III, in which homeostasis of activity is
reached. a Development of synaptic connectivity (average Ai j ). Note that the time axis is expanded
in the middle. The inset shows the development of synaptic density in cell cultures [65, 66, 70].
b Development of axonal extent (“axonal supply”; average Raxo

i ) and dendritic extent (“dendritic
acceptance”; average Rden

i ). c The course of network activity (average Xi ) and calcium concentra-
tion (average Ci ) during network development. Parameters of the model: ρden = 0.02, ρaxo = 0.01,
Ctarget = 0.05, τX = 5,

∣∣σ inh
∣∣ = |σ exc| = 1000, γ = 0.5, τC = 10, X0 = 0.0005, total number of

neurons = 100 (From [61], open access)
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14 A. van Ooyen and M. Butz-Ostendorf

Fig. 6 Avalanche distributions. Avalanche size distributions undergo characteristic changes dur-
ing network development in the model by Tetzlaff et al. [61]. Gray area in inset indicates stage of
development (see Fig. 5). a At the beginning of Phase I, when there are hardly any synaptic connec-
tions, the distribution is Poisson-like. b As more connections are formed, the distribution takes on
a power-law form. c In Phase II, when connectivity is high, the distribution becomes supercritical.
d In Phase III (if

∣∣σ inh
∣∣ = |σ exc|), when homeostasis is reached, the distribution is critical. The

exponent of the power law is close to −1.5 (From [61], open access)

In the beginning of Phase I, when there are no or hardly any synaptic connec-363

tions, the neurons do not influence each other’s electrical activity, and the avalanche364

distribution is Poisson-like (Fig. 6a). Later during Phase I, when connectivity and365

activity slowly increase, the avalanche distribution changes from a Poisson distribu-366

tion to a power-law distribution (Fig. 6b). In Phase II, with high network activity, the367

avalanche distribution becomes supercritical (Fig. 6c). Action potentials of both exci-368

tatory and inhibitory neurons were included in measuring this distribution. Even with369

much stronger inhibitory synaptic strength (
∣∣σ inh

∣∣ = 100|σ exc|, as compared with370 ∣∣σ inh
∣∣ = |σ exc|, as in Fig. 6), the distribution stays supercritical. The system remains371

supercritical during the whole of Phase II, until shrinkage of dendritic fields has so far372

pruned connectivity that homeostasis is reached, with calcium concentrations around373

Ctarget and stable neuronal activity (Phase III). In Phase III, provided
∣∣σ inh

∣∣ = |σ exc|,374

the avalanche distribution becomes critical (Fig. 6d). If inhibition is stronger, the375

system turns into a subcritical state, whereas without inhibition it remains slightly376

supercritical (although in all cases homeostasis of activity is reached). The exponent377

of the power law in Phase III is close to −1.5.378
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Homeostatic Structural Plasticity Can Build Critical Networks 15

Finding a power law for avalanche distributions is not sufficient to show decisively379

that the system is in a critical state [47]. Therefore, Tetzlaff et al. [61] performed380

several additional tests to confirm criticality. They validated that the avalanche dis-381

tribution remained critical when in the analysis fewer neurons or shorter or longer382

time bins were used, and that the inter-avalanche distribution and the Fano Factor383

[21, 41] also provided evidence for criticality.384

Developing cultures of dissociated cortical cells show similar transformations in385

avalanche distribution to those observed in the model [61]. Like the model, dis-386

sociated cultures start with an initial stage characterized by Poisson-like avalanche387

distributions, followed by a supercritical regime as connectivity and neuronal activity388

sharply increase. As connectivity and activity subsequently decline, the cultures go389

through a subcritical state before stabilizing in a critical state, a developmental course390

that can be mimicked in the model by gradually reducing the inhibitory strength in391

Phase III from
∣∣σ inh

∣∣ � |σ exc| to
∣∣σ inh

∣∣ = |σ exc|.392

6 Discussion393

Different variants [2, 38, 61] of the original neuritic field model [70, 72] have shown,394

as reviewed in this Chapter, that homeostatic structural plasticity is a potent develop-395

mental mechanism for bringing networks to criticality. In the assembly of a critical396

network, the developing neurons are guided only by the activity generated by the397

network itself, and there is no need for any external instructive signal. All model398

variants employ a spiking neuron model rather than a firing rate neuron model (as399

used in the original model) so that bursts of activity can arise and avalanches be400

defined.401

Neurons in the neocortex have a broad spectrum of firing rates [54], whereas in402

the models discussed here all cells have the same average firing rate at equilibrium.403

However, the relevant firing rate is the time-averaged firing rate on the time scale404

of structural growth, so cells can have different firing rates on shorter time scales.405

Moreover, different types of cells may have different homeostatic set-points, with406

neurons characterized by a high firing rate having their homeostatic set-point at a407

higher activity level than neurons that fire less frequently [19, 29]. The impact of such408

variability in set-points on the emergence of criticality could be a topic for future409

research.410

The use of circular neuritic fields in all models is a simple yet powerful way411

to abstract away from detailed neuronal morphology. A disadvantage is that it puts412

some constrains on the type of network topologies that can arise, as the strongest413

connections are usually formed between neighboring cells. Another way to model414

neuronal morphology, with fewer inherent constrains, is to assign to each neuron415

a set of axonal synaptic elements (representing axonal boutons) and a set of den-416

dritic synaptic elements (representing dendritic spines), which can combine to form417

synapses [13, 17]. In this model, which has also been implemented in the neural418

simulation package NEST [19], neurons generate new elements when neuronal elec-419
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16 A. van Ooyen and M. Butz-Ostendorf

trical activity is below a target value, and delete elements, including those bound in420

synapses, when activity is above the target value or below a certain minimum level.421

The model can account for changes in visual cortex after focal retinal lesions [13],422

alterations in global network topology following deafferentation and focal stroke423

[10], the emergence of efficient small-world networks [11], and the inverse relation-424

ship between cell proliferation and synaptic rewiring in the adult hippocampus [12],425

but has not yet been used to study avalanche dynamics.426

Future work may also include the analytical analysis of the role of inhibitory427

cells in the development and maintenance of critical circuits. The variant of the428

model that was studied analytically contains only excitatory cells [38]. The numerical429

studies by Tetzlaff et al. [61] predicted that criticality is best reached with 20%430

inhibitory cells and a synaptic strength of inhibitory connections that equals that of431

excitatory connections. However, the models by Abbott and Rohrkemper [2] and432

Kossio et al. [38] proved that inhibition is not required for criticality, thus meriting433

further investigation into the potential impact of differences in model formulation,434

especially the use of separate axonal and dendritic neuritic fields in Tetzlaff et al.435

[61].436

In addition to anatomical changes in connectivity, as brought about by homeostatic437

structural plasticity, two other categories of neural mechanisms have been proposed438

to explain the emergence of criticality: intrinsic cellular properties [18, 30] and short-439

and long-term synaptic plasticity [18, 39, 59]. An example of the first category is440

found in a biophysically realistic model of retinal waves [30]. In the model, starburst441

amacrine cells are equipped with a slow after-hyperpolarization current, which reg-442

ulates neuronal excitability. Spontaneous, cell-intrinsic firing activates this current,443

thereby reducing excitability and desynchronizing the activity sustained by synaptic444

transmission. The competition between the desynchronizing effect of spontaneous445

firing and the synchronizing effect of synaptic transmission enables the network to446

operate at a transition point between purely local and global functional connected-447

ness. These dynamics are somewhat reminiscent of those seen in a simple model448

for the occurrence of long-lasting periods of activity [73]. For certain parameter set-449

tings, the network is in a critical state in which periods of high activity (“long-lasting450

transients”) alternate irregularly with periods of quiescence. Transients are triggered451

by spontaneous firing but are eventually also terminated by spontaneous firing, as452

spontaneous firing, by means of inducing refractoriness, renders cells temporarily453

non-excitable and so interferes with the flow of network-generated activity.454

As to the second category of mechanisms for the origin of criticality, various455

models have shown that short- and long-term synaptic plasticity can tune a neural456

network into a critical state with power-law avalanche distributions. Levina et al. [39]457

demonstrated, both analytically and numerically, that synaptic depression—the short-458

term decrease in synaptic strength due to depletion of neurotransmitter vesicles—can459

drive the dynamics of a network towards a critical regime (but see [9]). Stepp et al. [59]460

showed that a combination of short- and long-term synaptic plasticity can produce461

hallmarks of criticality, with the interplay between Hebbian long-term excitatory and462

inhibitory plasticity providing a mechanism for self-tuning. Likewise, Del Papa et al.463

[18] found that a network endowed with firing threshold adaptation and various types464
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Homeostatic Structural Plasticity Can Build Critical Networks 17

of plasticity, including homeostatic synaptic plasticity [62, 63] and a simple form of465

structural plasticity, can give rise to criticality signatures in network activity.466

The power-law exponents −1.5 and −2 for avalanche size and duration, respec-467

tively, imply that each firing neuron activates, on average, one other neuron, so468

activity will on average neither die out nor explode over time [78]. Thus, an impor-469

tant functional advantage of such a critical state is that neural circuits are prevented470

from becoming hyper- or hypoactive. Although functional properties have not been471

studied in the models discussed here [2, 38, 61], maintaining a stable average level of472

activity is in general crucial for processes ranging from memory storage to activity-473

dependent development [31, 64]. Besides homeostatic structural plasticity, other474

forms of slow plasticity, such as homeostatic synaptic plasticity or synaptic scaling475

[63], are directed at stabilizing network activity (and may generate critical dynamics476

[38]), in order to counter the destabilizing forces of synaptic long-term potentiation477

(LTP) and long-term depression (LTD) during memory encoding.478

Further functional benefits of critical dynamics include the maximization of479

dynamic range, information transmission and information capacity [56]. A network480

at criticality is sensitive to external input, exhibiting a wide range of possible response481

sizes [36]. Activity patterns in critical networks are not biased towards a typical scale482

or sequence, providing flexibility that may be advantageous during development as483

connections are established [30]. Avalanches may reflect the transient formation of484

cell assemblies [50], and the scale-free organization of avalanche size at criticality485

implies that assemblies of widely different sizes occur in a balanced way [36].486

In conclusion, during development, homeostatic structural plasticity can guide the487

formation of synaptic connections to create a critical network that has optimal func-488

tional properties for information processing in adulthood. In this form of plasticity,489

neurons adapt their axonal and dendritic morphology and, consequently, their con-490

nectivity so as to reach and maintain a desired level of neuronal activity. Homeostatic491

structural plasticity does not require information about pre- and postsynaptic activity,492

as does Hebbian synaptic plasticity (synapse-centric plasticity), but only needs the493

local activity state of the neuron itself (neuron-centric plasticity). In general, home-494

ostatic structural plasticity may act as a central organizing principle driving both the495

formation of networks [11, 61, 67, 70, 72] and the compensatory structural changes496

following loss of input caused by lesions, stroke or neurodegeneration [10, 13].497
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