
The recent growth of knowledge about all aspects 
of neural development has been immense and has 
included information on the roles of morphogens in 
early development, the molecular cues underlying axon 
guidance and the molecular mechanisms involved in 
neuronal morphogenesis and synapse formation (BOX 1). 
Mathematical and computational models can provide 
insight into how the concerted actions of these molecu
lar and cellular processes lead to the formation of the 
nervous system (BOX 2). In addition to providing quan
titative information (such as calculating the smallest 
concentration gradient of a guidance cue that a migrat
ing axon might be able to sense1), theoretical models 
provide the unique opportunity to deduce the potential 
consequences of the multitude of interactions that take 
place at molecular, cellular and network levels, and thus 
to help researchers to discover the principles by which 
the nervous system emerges. The growth in empirical 
data has facilitated the creation of theoretical models 
of neural development that are more strongly based on 
biological processes, yielding predictions that can be 
tested experimentally.

This Review gives a broad overview of contem
porary models of the various stages of neural devel
opment, from neural tube formation to the generation 
of synaptically connected networks. The models 
described have been chosen to illustrate and contrast 
the different approaches taken in modelling develop
ment, to indicate the insights and predictions that  
can be derived from these model studies, and to 
highlight the opportunities and challenges for future 
modelling.

Neural tube formation
During neural tube formation (neurulation), the lateral 
edges of the neural plate fuse, creating a hollow cylinder 
inside the embryo, from which the nervous system will 
form. This process involves cell movement and changes 
in cell number, shape and adhesion2,3. Mathematical 
models can be used to explore the many reciprocal inter
actions between intercellular signalling, gene expression 
and cell differentiation, motion, adhesion and division 
that take place3,4. For example, the regulation of gene 
transcription controls differential adhesion between 
cells, affecting cell movement. Cell movement creates 
new cell contacts, altering intercellular signalling, which 
in turn affects gene regulation5,6.

These reciprocal interactions were taken into account 
in a computational model of neural tube formation7 
(FIG. 1A,B,C). The model incorporated two transcriptional 
switches: a neuroectodermal switch that regulates the 
specification of ectoderm into neuroectoderm (neural 
plate) and a neuronal switch that controls the differen
tiation of a subset of neuroectoderm cells into neurons. 
In this model, bone morphogenetic proteins and Sonic 
hedgehog (SHH), as well as signal transduction triggered 
by the binding of Delta to Notch, act on these switches. 
The genetic switches regulate cell adhesion, movement 
and division. An important insight from the model was 
that the major types of neurulation that occur in ver
tebrates and invertebrates do not necessarily require 
greatly different mechanisms8. If cell motion is turned 
on by the neuroectodermal switch, a closed neural tube 
is formed (vertebrate primary neurulation). If the rate of 
cell division is high, ingression of a neural cell mass takes 
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Morphogens
Secreted factors that can 
induce different cell fates 
across a sheet of cells in a  
concentration-dependent 
manner by forming gradients.
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neural development
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Abstract | The development of the nervous system is an extremely complex and dynamic 
process. Through the continuous interplay of genetic information and changing intra-  
and extracellular environments, the nervous system constructs itself from precursor  
cells that divide and form neurons, which migrate, differentiate and establish synaptic 
connections. Our understanding of neural development can be greatly assisted by 
mathematical and computational modelling, because it allows us to bridge the gap  
between system-level dynamics and the lower level cellular and molecular processes.  
This Review shows the potential of theoretical models to examine many aspects of  
neural development.
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Lamellipodia
Sheet-like extensions at the 
edge of a cell that contain a 
crosslinked F-actin meshwork 
and are often associated with 
cell migration.

Convergent extension
The process by which the 
tissue of an embryo is 
restructured so that it  
narrows along one axis and 
elongates along a 
perpendicular axis by  
cellular movement.

place (vertebrate secondary neurulation). If cell motion 
is controlled by the neuronal switch rather than the  
neuroectodermal switch, isolated neuroblasts are formed, 
as occurs in insects9. The model also highlighted the pro
found morphogenetic potential of the interplay between 
gene expression and cell differentiation on the one 
hand, and cell shape, motion and adhesion on the other  
hand (see also REF. 5).

A more advanced, threedimensional model of neu
rulation has since been developed that incorporates a 
realistic description of the mechanical forces at the sub
cellular, cellular and tissue levels4 (FIG. 1D). This model 
simulates morphogenetic movements in three dimen
sions, closely matching those that take place in real 
embryos, and allows for testing of hypotheses about the 
forces that drive neurulation. For example, experimental 
studies10 have shown that the action of lamellipodia on 
neural plate cells is important for convergent extension 
of the neural plate before folding. The model showed 
that normal neurulation does not occur if lamellipo
dium forces are uniform across the width of the neural 
plate, thus indicating locations at which differential gene 
expression might be occurring10. Although the model 

also includes mechanical forces regulated by genes and 
signalling pathways, it has not yet explored the full 
dynamical and reciprocal interactions between gene 
regulation, cell motion and morphogen gradients.

Regionalization of the neural tube
In the next stage of development, the neural tube 
becomes specified along its rostrocaudal and dorsov
entral axes into distinct domains from which different 
neural cell types will emerge. A central question is there
fore how an apparently spatially uniform neural tube is 
transformed into a spatially nonuniform structure, 
with different areas committed to different fates. It is 
known that, in general, diffusion of a morphogen from 
its source creates a smoothly declining concentration 
gradient. This can result in a pattern of cell fates when 
different morphogen concentrations turn on or off dif
ferent sets of genes. This plays a part, for example, in the 
dorsoventral patterning of the neural tube by SHH11 and 
the rostrocaudal patterning by fibroblast growth factors 
(FGFs)12. Theoretical models have been used to enhance 
our understanding of this process in several ways.

One modelling study13 showed that diffusion of a 
morphogen from its source together with binding of the 
morphogen to membrane receptors creates, at steady
state, an even concentration of receptorbound morpho
gens across the neural tube. Thus, the study suggested 
that in addition to simple passive diffusion, intracellular 
transport mechanisms might be needed to establish a 
reliable concentrationbased positional signalling sys
tem. Morphogen transport and signalling can be regu
lated by nonspecific binding to cellsurface molecules, 
by intracellular trafficking and by complex feedback 
loops involving up and downregulation of morphogens 
and their receptors14–17. Future modelling studies could 
provide insights into the synergistic contributions of 
each of these elements to tissue patterning.

Hypotheses for how morphogens organize tissues 
typically consider the morphogen gradient after it has 
reached a steady state. However, a recent computational 
model18 showed that the dynamics of gradient formation 
are also important for the dorsoventral patterning of the 
neural tube (FIG. 2). This model incorporated SHH trans
port and signalling — including free diffusion, binding 
to cell surface and extracellular matrix components, 
intracellular trafficking, upregulation of SHH receptor 
synthesis by SHH, and SHH receptormediated degrada
tion of SHH. Using these processes, the model simulated 
the generation of a sharp boundary between cells fated to 
become interneurons and motor neurons. Furthermore, 
it showed that the generation of this boundary relies on 
both the bistability of the intracellular SHH signalling 
pathway, and the spatial effects of receptor upregulation 
and receptormediated degradation of SHH. The simu
lation also predicted, perhaps counterintuitively, that 
slowing the transport of SHH can increase its signalling 
range (see also REF. 17), which supports experimental 
findings in which modified SHH with altered diffusivity 
was used19. Interestingly, the simulation results showed 
that a fixed cellfate boundary is established long before 
the SHH gradient has stabilized, which can account for 

 Box 1 | Stages of neural development

Neural development begins when, in response to diffusible proteins secreted by  
the mesoderm, a portion of ectoderm on the dorsal surface of the embryo becomes 
specified as neuroectoderm. The lateral edges of this one-cell thick sheet of cells 
(neural plate) elevate, appose each other and then fuse to form a hollow cylinder 
(neural tube formation), which later develops into the brain and most of the spinal 
cord. The neural tube at more posterior levels of the future spine is formed by 
ingression of a mass of neuroectoderm cells, followed by canalization. As a result of 
molecular gradients, the neural tube subsequently becomes specified into a number  
of distinct domains (regionalization of the neural tube), the precursors of the 
different areas of the central nervous system. Next, the wall of the neural tube thickens 
as new neurons are generated (cell proliferation) and migrate away from the 
pro liferation zone, at the inside surface of the tube, towards the outer surface of  
the tube (cell migration). Neurons also migrate tangentially (parallel to the surface  
of the tube). In some regions, migration gives rise to layered structures, as in the 
cerebral cortex. In the developing retina, tangential cell movements help to create 
regular spacing of cells (retinal mosaics). During migration, in response to both intrinsic 
and extrinsic factors, neurons gradually become specified into different cellular types 
(cell differentiation). Large numbers of neurons die during proliferation and migration. 
Upon arrival at their destination, neurons begin to produce several undifferentiated 
neurites. In a competitive process, one of these becomes specified as the axon, whereas 
those that remain differentiate into dendrites (axon specification). The dynamic 
behaviour of growth cones causes dendrites to branch extensively and to gradually 
form their characteristic morphologies (neurite elongation and branching). Guided 
by diffusible and membrane-bound chemical cues in their environment, axons  
continue growing to their targets (axon guidance). Once they have arrived in their 
target region, axons may branch considerably before terminating to form initial  
synaptic connections with target structures (network formation). Refinement of these 
connections occurs by retraction of axonal branches that project to the wrong targets 
and elaboration of branches that project to the correct targets, a process that involves 
competition for target-derived neurotrophic factors (synaptic competition). The 
formation and deletion of synapses, outgrowth and retraction of axons and dendrites 
(structural plasticity), and changes in the efficacies of existing synapses (synaptic 
plasticity), lead to changes in the connection strength between neurons. Remodelling 
of axonal arborizations, as well as axon guidance cues, also underlies the formation of 
topographic maps (topographic map formation). Both establishment and refinement 
of connectivity are influenced by neuronal activity (for more detailed accounts of 
neural development, see REFS 169–171).
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Delta–Notch signalling
Signalling pathway involved in 
cell–cell communication and 
cell differentiation. Because 
both the ligand Delta and the 
receptor Notch are 
membrane-bound proteins, 
cells must be adjacent for 
signalling to occur.

recent experimental results showing that the dynamics 
of concentration gradient formation, rather than the 
steadystate morphogen gradient, seem to play a crucial 
part in tissue patterning20. This model could be used 
to clarify the many regulatory mechanisms involved 
in SHH gradient formation and cell fate specification, 
and to explore the effects of cell division and cell death  
during patterning.

Proliferation, migration and differentiation
As the wall of the neural tube thickens, cells migrate 
away from the proliferation zone and become specified 
into different types of neuron. Few models for these 
stages of development exist. However, modelling could 
help us to understand the consequences of the many, 
simultaneous regulatory interactions that control pro
liferation, migration and differentiation. These include 

signals from within a cell, such as the proteins inher
ited from its precursors, and signals from outside the 
cell, such as diffusible molecules and membranebound  
molecules provided by other cells. 

One of the few models of proliferation21 considered 
feedback regulation of proliferation in the context of neu
rogenesis in the olfactory epithelium. Olfactory recep
tor neurons derive from a multistage lineage with three 
proliferating, progenitor cell stages. The model uses dif
ferential equations to describe the population sizes of the 
different cell stages, and incorporates negative feedback 
from each cell stage on the proliferation of its precursors. 
One of the findings of this model was that autoregula
tion of the proliferation of progenitor cell stages and a 
low death rate of the differentiated cell type enhance the 
stability of the number of cells in the system. In general, 
feedback regulation by postmitotic neurons onto earlier 
stages enables a tissue to control the total cell number 
and the proportions of differentiated cell types22.

The layers of the cortex develop in an insideout 
manner, with neurons of the deeper cortical layers being 
generated before those of the superficial layers. By what 
mechanisms does this insideout order arise? A model23 of 
cell proliferation and migration showed that even a sim
ple set of local instructions inside each cell, together with 
mechanical interactions between cells, is capable of pro
ducing the insideout lamination of the cortex (FIG. 3A).

Cell migration has also been studied in models of 
the formation of retinal mosaics, the regularly spaced 
configuration of retinal cells that emerges from a ran
dom pattern during development (reviewed in REF. 24). 
One of these models25 showed that regular distributions 
arise if the tangential movements of retinal neurons are 
driven by repulsive interactions between neighbouring 
dendrites. In the model, the cell’s dendrites are repre
sented by a circular field around its cell body (a similar 
approach was taken in REF. 26), and overlap between the 
fields of neighbouring cells causes cell movement. A 
second model27 incorporated a biophysical description 
of the mechanical forces on the dendrite’s cytoskeleton 
caused by dendritic interactions, and suggested that the 
rigid components in the cytoskeleton play a key part in 
the formation of retinal mosaics.

An important mechanism for cell differentiation (and 
for pattern formation in general28,29) is lateral inhibition, 
whereby initially undifferentiated cells compete with their 
neighbours to acquire a particular cell fate. A major path
way by which lateral inhibition is mediated and a wide 
range of patterns is produced is the Delta–Notch signalling  
system30–32 (FIG. 3B). Another model of retinal mosaic for
mation33 predicted that Delta–Notch signalling alone is 
insufficient to produce mosaics of the same regularity 
as those observed experimentally, and that additional 
processes such as lateral cell movement or cell death are 
required.

An important challenge in modelling the early stages 
of neural development is to take into account the links 
between proliferation, migration and differentiation34. 
This was achieved in a phenomenological model (BOX 2) 
of neocortical growth35. It is also important to couple pro
liferation, migration and differentiation to intracellular 

 Box 2 | Classification of models

There are several ways in which models of biological processes can be classified.

Formal or informal models
Informal models are expressed in words or diagrams, whereas formal models — which 
this Review is concerned with — are described in mathematical equations or computer 
instructions172. Using formal language forces a model to be precise and self-consistent. 
The process of constructing a formal model can therefore identify inconsistencies, 
hidden assumptions and missing pieces of experimental data173. Formal models allow 
us to deduce the consequences of the postulated interactions among the components 
of a given system, and thus to test the plausibility of hypothetical mechanisms165. 
Models can generate new hypotheses and make testable predictions, thereby guiding 
further experimental research. Equally importantly, models can explain and integrate 
existing data165.

Phenomenological or mechanistic models 
Most formal models lie on a continuum between two extreme categories: 
phenomenological and mechanistic132,174. A phenomenological model attempts to 
replicate the experimental data without requiring the variables, parameters and 
mathematical relationships in the model to have any direct correspondence in the 
underlying biology. In a mechanistic model, the mathematical equations directly 
represent biological elements and their actions. Solving the equations then shows how 
the system behaves. We understand which processes in the model are mechanistically 
responsible for the observed behaviour, the variables and parameters have a direct 
biological meaning and the model lends itself better to testing hypotheses and making 
predictions.

Although mechanistic models are often considered superior, both types of model can 
be informative. For example, a phenomenological model can be useful as a forerunner 
to a more mechanistic model in which the variables are given explicit biological 
interpretations. This is particularly important considering that a complete mechanistic 
model may be difficult to construct because of the great amount of information it 
should incorporate. Mechanistic models therefore often focus on exploring the 
consequences of a selected set of processes, or try to capture the essential aspects of 
the mechanisms, with a more abstract reference to underlying biological processes.

Top-down or bottom-up models
Formal models can be constructed using a top-down or a bottom-up approach174,175. In 
a top-down approach, a model is created that contains the elements and interactions 
that enable it to have specific behaviours or properties. In a bottom-up approach, 
instead of starting with a pre-described, desired behaviour, the properties that arise 
from the interactions among the elements of the model are investigated. Although it is a 
strategy and not a type of model, the top-down approach resembles phenomenological 
modelling because it is generally easier to generate the desired behaviour without all 
of the elements of the model having a clear biological interpretation. Conversely, the 
bottom-up approach is related to mechanistic modelling, as it is usual to start with 
model elements that have a biological meaning. Both approaches have their strengths 
and weaknesses.
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gene regulatory networks36,37. A recent model38 of the 
differentiation of the neocortex into different areas 
along the anterior–posterior axis predicted which of 
the possible regulatory networks of gene interactions 
can reproduce the anterior–posterior gene expression 
pattern observed experimentally. The model suggested 
that a regulatory network previously proposed on the 
basis of experimental observations39 cannot explain the 
experimental data.

During development, the cellular environment 
changes, resulting in changes in gene expression that 
drive processes such as differentiation and migration. 
In turn, these processes change the cells’ environment. 
New simulation tools, such as CX3D23 and CompuCell40, 
will be helpful in studying the consequences of these 
reciprocal interactions. CX3D is a tool for modelling all 
stages of corticogenesis, such as cell division and migra
tion, and the influence on these processes of mechani
cal forces, cell–cell contact and diffusible signals. 
CompuCell models the morphogenesis of multicellular 
organisms, in particular simulating the interaction of 
gene regulatory networks with cellular mechanisms such 
as cell adhesion, division, differentiation and migration. 
Furthermore, as recent evidence shows that even early 
developmental processes, such as proliferation, migra
tion and differentiation, can be regulated by electrical 
signalling41, future models of these processes would need 
to take this into account.

Axon–dendrite differentiation
During or after migration, neurons begin to project a 
number of extensions, one of which differentiates into 
the axon, whereas those that remain become dendrites. 
Axon specification seems to involve competitive inter
actions among the undifferentiated neurites, with the 
neurite that is slightly longer than the others tending to 
become the axon42.

How does a single axon among neurites of equal 
potential become specified? Only a few model stud
ies have addressed this question. One of these43 
studies modelled the transport of an unspecified growth 
promoting chemical from the soma to the growth 
cones at a rate that was assumed to increase with the 
neurite’s growth rate. The model showed that this posi
tive feedback loop results in a single, rapidly growing 
axon if one neurite has a slightly larger initial length. 
Subsequent experimental work proposed that signal
ling molecules regulating protein trafficking and the 
behaviour of the cytoskeleton might form such positive 
feedback loops44,45. Because of its dependence on levels 
of intracellular calcium, axon specification might also be 
regulated by electrical signalling46,47.

Future modelling studies of axon specification should 
incorporate data on the intracellular signalling pathways 
involved in axon–dendrite differentiation48,49, and inves
tigate whether the interactions between these identified 
cellular and molecular mechanisms can give rise to the 
feedback loops necessary for the establishment of neu
ronal polarity50. Recently it was observed that shootin 1,  
a key regulator of axon outgrowth, accumulates in neu
rite tips in a neurite lengthdependent manner51. In 

Figure 1 | Modelling neural tube formation. A | A computational model of neural 
tube formation7 contains genetic switches that regulate the specification of ectoderm 
into neuroectoderm (neural plate) and the differentiation of neuroectoderm cells into 
neurons. Bone morphogenetic proteins (BMPs), Sonic hedgehog (SHH) and signal 
transduction triggered by the binding of Delta to Notch, act on these switches. The 
genetic switches, in turn, regulate cell adhesion, movement and division. B | The model 
showed how interactions between gene expression, intercellular signalling, and cell 
division and motion can lead to neural tube formation. The dorsal part of a transverse 
embryonic section is shown at successive times. Ba | Before invagination, the nuclei of 
cells expressing the neural plate gene Notch (shown in green) are observed in the area 
that will become the neural plate. Attachment points between cells are shown in red.  
Bb | Neural plate cells express Notch alone, or Notch together with the neuronal gene 
Delta (shown in yellow). Cell membranes are shown in shades of blue, and lighter 
colours indicate larger concentrations of Delta. The neural plate starts invaginating 
while epithelial cells grow over the neural cells, forming the neural ‘folds’. Bc | Neural 
tube formation as a result of the joint effect of neural cells migrating downwards and 
epithelial cells dividing and pushing the neural folds inwards. C | If the model is tested 
under conditions of high cell division, ingression of a Delta- and Notch-expressing 
neural cell mass takes place (resembling the initial stage of secondary neurulation).  
D | A more advanced, three-dimensional model of neurulation4 incorporates a  
detailed description of the mechanical forces at the subcellular, cellular and tissue 
levels. The model produces morphogenetic movements closely matching those of the 
developmental stages of axolotl neurulation. The neural plate is shown in yellow, neural 
folds are shown in blue and non-neural ectoderm is shown in green. Parts B and C are 
modified, with permission, from REF 7 © (1998) Wiley. Part D is reproduced, with 
permission, from REF 4 © (2008) IOP Science.
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Centrifugal order
The distance of an axonal or 
dendritic segment from the 
soma, in terms of the number 
of branch points between the 
segment and the soma.

combined experimental and modelling work51 (FIG. 4a,b), 
it was shown that anterograde transport and retrograde 
diffusion can account for this, and that lengthdependent 
accumulation, together with shootin 1dependent neur
ite outgrowth52, constitutes a positive feedback loop that 
can amplify stochastic fluctuations in shootin 1, thereby 
generating an asymmetric signal for axon specification.

Neurite elongation and branching
Dendritic development is driven by complex interactions 
between intrinsic molecular pathways and local envi
ronmental signals53–56. Although many of the molecules 
involved have been characterized, we are still far from a 
mechanistic understanding of dendritic morphogenesis. 
A central question is how neuron typespecific dendritic 
morphologies, in terms of size and branching patterns, 
emerge from underlying intracellular signalling cascades 
and extracellular influences.

To shed light on possible growth mechanisms, some 
models57–59 have created virtual dendritic trees using 
branches with morphological characteristics that are 
sampled from distributions derived from real neurons. 
These models have indicated, for example, that the cen-
trifugal order of a dendritic segment may determine the 
probability of branching in most cell types, except in 
pyramidal cell apical trees, where this probability seems 
to depend more on path distance from the soma58.

The stochastic phenomenological models of Van 
Pelt60–62 describe the growth of a neuron over time, from 
the perspective of individual growth cones (FIG. 5a,b). By 
two actions of the growth cone — elongating the trailing 
neurite or branching into two daughter growth cones 
— the whole dendritic tree is gradually created over 
time. These models are capable of accurately producing 
the morphology and variability in the morphology of a 
wide range of neuron types, and have predicted interest
ing growth differences between cell types, such as the 
degree of competition between growth cones60. These 
models form the basis of the recently developed simula
tion tool NETMORPH63 for the stochastic generation 
of largescale neuronal networks with realistic neuron 
morphologies.

The models of Van Pelt also indicated that the prob
ability of branching may be modulated by the total 
number and centrifugal order of terminals, but they do 
not identify the underlying biophysical mechanisms. 
A more recent mechanistic model64 (BOX 2), in which 
branching depends on a substance (such as tubulin or 
microtubuleassociated proteins (MAPs)) that is pro
duced in the cell body and transported to the terminals, 
showed that the same modulation of branching can 
emerge as a result of transportlimited effects.

A number of models have explored the implications 
of tubulin dynamics for neurite outgrowth. In one of 

Figure 2 | Modelling the dorsoventral regionalization of the neural tube. A computational model18 has been used to 
study the specification of V3 interneurons (V1–V3 are distinct populations of ventral interneurons) and motoneurons 
(MNs) under the influence of Sonic hedgehog (SHH) secreted from the floorplate. a | A schematic transverse cross section 
of the neural tube. Labels on the left side of the tube indicate mature cell fates that will emerge from each region. SHH 
secreted by the floorplate diffuses through the neural tube and the concentration of SHH determines the fate of cells. 
SHH stimulates intracellular GLI1 expression, which in turn induces differentiation into V3 interneurons. As SHH 
concentration rises above a threshold concentration, it stimulates GLI1 production to the point at which GLI1 positively 
feeds back on its own expression. The on–off GLI1 expression interface demarcates the V3–MN boundary. b | The model 
predicted how three types of mechanisms that affect SHH transport modify the SHH extracellular gradient and shift  
the position of the V3–MN boundary. Reducing SHH diffusivity, which causes accumulation of SHH near its source, can, 
paradoxically, increase the signalling range of SHH, leading to a dorsal shift in the V3–MN boundary. Conversely, 
enhancing SHH diffusivity can lead to a ventral shift in the boundary. Sequestering of free SHH by transmembrane 
proteins (shunting) decreases SHH over the entire tissue, shifting the boundary ventrally. Part b is modified, with 
permission, from REF 18 © (2006) The Company of Biologists.
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Compartmental-based 
models
A modelling approach in which 
a spatially continuous 
structure, such as a neurite, is 
divided into a large number of 
small compartments. Each 
compartment is assumed to be 
a homogeneous entity, and 
neighbouring compartments 
interact chemically or 
electrically. 

these65, tubulin is produced in the cell body and trans
ported by diffusion and active transport to the growth 
cones, where assembly in microtubules elongates the 
neurite. The model showed that the fastest growing neu
rite branch, by creating a steep concentration gradient 
and thus attracting most of the tubulin, can prevent the 
outgrowth of other branches. Stopping the growth of the 
fastest branch ‘awakens’ the other branches. Such com
petitive outgrowth of neurite branches was subsequently 
supported experimentally66,67. This tubulinbased model 
has been extended in compartmental-based models68,69 
(FIG. 5c) that incorporate neurite branching, modula
tion of neurite elongation and branching by MAPs, and 

calcium dynamics (reviewed in REF. 70). These models 
produce a wide variety of characteristic dendritic trees 
(FIG. 5d) depending on the calciumdependent rates of 
phosphorylation and dephosphorylation of MAPs, and 
predict differences in these rates in neurons with differ
ent branching patterns.

Another model of neurite outgrowth is based on mem
brane expansion by exocytosis of vesicles transported inside 
the cell body and neurite71. Microtubules stabilize neurites 
by decreasing the rate of endocytosis and guide vesicle 
movement. Depending on the coupling between micro
tubules and vesicle dynamics, the model predicted three 
different growth modes: steady ‘axonal’ growth, stochastic  
‘dendritic’ growth and fast oscillatory growth.

The mechanistic models previously described con
sider the internal mechanisms that govern neurite elon
gation and branching. However, other models focus 
mainly on external influences. For example, to better 
understand the role of growth conegenerated mechani
cal tension in axon elongation, a model was developed72 
that incorporates cell adhesion between axon and sub
strate. Experimental observations have shown that axons 
elongate by stretching or by addition of new material at 
the tip, and the simulations predicted that this depends 
on the strength of adhesion along the axon and on its 
viscosity.

Another model73 focuses on the role of the tension 
that filopodia exert on the growth cone. Growth cone 
filopodia attach to fixed, randomly dispersed adhe
sion sites in the environment, and neurite branching is 
induced if the forces pulling the growth cone apart over
come a certain threshold. The model can account for 
some empirically observed morphological characteristics 
of dendritic trees, such as centrifugal orderdependent  
segment lengths.

The growth of dendritic trees based on diffusion-
limited aggregation has been proposed by the creators of 
another model74. Although the model was able to gener
ate diverse neuronal shapes by changing the space avail
able for growth and the spatial distribution of particles 
needed for growth in the environment, a direct transla
tion to biological processes is difficult, as real neurites 
do not directly grow by aggregating particles from their 
environment.

Repulsive interactions between dendrites may under
lie the development of dendritic trees that uniformly 
cover space75, such as those of retinal ganglion cells and 
Purkinje cells. A model study76 showed that such den
dritic patterns can emerge autonomously if two hypo
thetical chemicals, an activator and a suppressor, control 
dendrite outgrowth. Outgrowth is catalysed by the acti
vator, which diffuses only intracellularly, and is inhibited 
by the activatorinduced suppressor, which is secreted 
and diffuses extracellularly, causing repulsion between 
dendrites. However, it is not clear what the nature of the 
chemicals might be in vivo and whether this approach 
can be extended to describe the development of other 
types of neuron.

Finally, a number of theoretical studies have explored 
whether dendritic branching patterns can be under
stood as optimizing functional constraints, which may 

Figure 3 | Modelling cell proliferation, migration and differentiation. A | During 
development of the cortex, cells of the deeper cortical layers are generated before those 
of the superficial layers. A computational model23 showed that a simple set of cellular 
instructions can produce this inside-out order of cortical development. In the model, 
neuron precursors were instructed to behave according to the following rules: they move 
randomly until they touch a radial fibre on which they fix themselves, they migrate 
distally along the fibre, leave the fibre and stop migration when they encounter a layer 1 
(L1) cell. Aa | L6 neuron precursors are produced by asymmetrical division of the 
progenitor cells. They migrate along radial glial processes. Ab | When the neuron 
precursors detect the top-most L1 cells, they stop migrating by detaching from the  
radial fibres. Owing to the mechanical interactions between cells, L1 is pushed upwards.  
Ac | When L5 neurons are produced, they follow the same path, passing through L6 cells 
until they contact L1, progressively pushing L1 upwards. Ad | The same process occurs 
for L4 and L2–L3. A few cells end up in the wrong layer, as observed in the cortex176.  
B | Computational models have also been used to study the mechanisms by which cells 
can acquire different fates. One such model of cell differentiation starts with a 
homogeneous population of cells expressing equal concentrations of the 
membrane-bound ligand Delta and its receptor Notch23,30. Each cell activates Notch in its 
neighbouring cells, depending on its own Delta level, while decreasing its own Delta 
concentration based on its Notch level. Over time, this results in populations of cells with 
high Notch or high Delta levels. Figure is reproduced, with permission, from REF 23 © 
(2009) Frontiers Research Foundation.
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Diffusion-limited 
aggregation
The process whereby particles 
undergoing random 
movements cluster together to 
form aggregates.

Figure 4 | Modelling axon–dendrite differentiation and axon guidance. a | Theoretical models have been used to 
analyse how a single, rapidly growing axon could emerge from neurites of equal potential. A model showed how shootin 1, 
a key regulator of axon outgrowth, accumulates in neurite tips in a length-dependent manner51, and how the dynamics of 
shootin 1 causes one neurite from a group of neurites of similar length to outgrow its siblings and become the axon. 
Shootin 1 is in a stochastic manner actively transported from the cell body to the growth cone, from where it diffuses back 
to the cell body. This leads to preferential accumulation of shootin 1 in long neurites, because retrograde diffusion, but not 
active anterograde transport, becomes weaker with length. The strength of anterograde transport and retrograde 
diffusion is indicated by the thickness of the arrows. At the growth cone, shootin 1 induces outgrowth52. This therefore 
results in a positive feedback loop that amplifies small stochastic fluctuations in shootin 1. b | Shootin 1 accumulation and 
neurite length fluctuate stochastically until one neurite predominately accumulates shootin 1 and undergoes rapid 
outgrowth. A similar course of events was observed experimentally51. c | Theoretical models can also be used to 
understand the mechanisms by which an axonal growth cone ‘reads’ extracellular gradients of guidance molecules and 
translates this into growth cone turning. A Bayesian model84 of axon guidance showed that a growth cone with ‘noisy’ 
receptors (receptors on which ligand binding fluctuates) can most reliably estimate the direction of an external ligand 
gradient if it assigns more weight to the signals from bound receptors that are further away from the growth cone’s centre. 
This is the optimal rule for deciding what the direction of the gradient is. A schematic growth cone is shown in an external 
concentration gradient of ligand molecules. Ligand molecules bind probabilistically to receptors. Signals from bound 
receptors are then combined to decide the most consistent gradient direction for that pattern of ligand binding. d | The 
model with this optimal decision rule was used to predict — for different gradient steepnesses and concentrations of  
the ligand nerve growth factor (NGF) — the performance of the growth cone in estimating the correct gradient direction. 
The percentages refer to the fractional change in concentration across 10 μm. The performance is better at higher 
gradient steepness and drops off faster at higher than at lower ligand concentrations. Furthermore, the width of the curve 
increases with gradient steepness. The performance of real growth cones was found to show the same relationship with 
gradient steepness and ligand concentration84, suggesting that real growth cones might employ such an optimal decision 
rule. Parts a and b are reproduced, with permission, from REF 51 © (2010) Macmillan Publishers Ltd. All rights reserved. 
Parts c and d are reproduced, with permission, from REF 84 © (2009) National Academy of Sciences.
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Figure 5 | Modelling neurite elongation and branching. An important question is how the morphology of axonal and 
dendritic trees is determined. Theoretical models have provided insight into the possible mechanisms through which 
branching patterns are controlled. a | In a phenomenological model of neurite outgrowth60-62, each neurite starts with an 
initial segment with a growth cone at the tip. The growth cone elongates the neurite and can branch, creating two daughter 
growth cones (branching events are shown by an arrow and red growth cones). Each growth cone in the growing tree has a 
branching probability that is the product of three factors: a factor that decreases with developmental time (shown by a blue 
line), a factor that changes with the growth cone’s centrifugal order (not shown) and a factor that decreases with the 
momentary number (n) of growth cones in the tree (shown by a red line). This last factor reflects competition between 
growth cones for resources. Parameter E denotes the strength of competition. After each branching event, the branching 
probability thus decreases. In this example, E = 0.5 and τ = 3.7 days. b | Six model-generated neurons177. The model 
parameters, such as competition strength, were chosen so that the morphology of the generated trees best matched the 
morphology of layer 2–3 rat cortical pyramidal neurons. Axons are shown in green and dendrites are shown in red. c | In a 
biophysical model of neurite outgrowth68, tubulin is produced in the cell body and transported by diffusion and active 
transport to the growth cones, where assembly in microtubules elongates the neurite. Neurite outgrowth is further 
modulated by microtubule-associated proteins (MAPs), with phosphorylated MAP2 favouring branching (as a result of weak 
crosslinking of microtuble bundles by phosphorylated MAPs) and dephosphorylated MAP2 favouring elongation (as a result 
of strong crosslinking)178. Phosphorylation and dephosphorylation increase with the intracellular calcium concentration. 
Calcium enters along the whole neurite and diffuses inside the cell. d | Depending on the relative rates of 
calcium-dependent MAP phosphorylation and dephosphorylation, and in interaction with the calcium dynamics, the model 
produces a variety of characteristic dendritic trees. The results of two parameter settings are shown. If phosphorylation 
reaches its half-maximum rate at a higher calcium concentration than dephosphorylation, dendrites are produced in  
which branching increases distally (left side). If dephosphorylation reaches its half-maximum rate at a higher  
calcium concentration than phosphorylation, trees with elongated distal dendrites are generated (right side). High  
calcium concentration is shown in yellow. T, developmental time. Part b is reproduced, with permission, from REF 177 © 
(2010) Frontiers Research Foundation. Part c is reproduced, with permission, from REF 70 © (2006) BioMed Central. Part d is 
modified, with permission, from REF 68 © (2001) Elsevier. 
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Chemotaxis
The phenomenon in which cells 
or bacteria direct their 
movement according to 
gradients of chemicals in their 
environment.

Bayesian ideal observer
A theoretical observer that 
uses the concepts of Bayesian 
statistical decision theory to 
determine optimal 
performance in a task, given 
the available stimulus 
information.

RHO GTPase system
The group of molecules related 
to the product of the oncogene 
RAS, which are involved in 
controlling the polymerization 
and subsequent organization 
of actin.

give insight into developmental principles as well. For 
example, the branching structure of Purkinje cells can 
be well simulated by models designed to minimize the 
path length from synapses to soma while constraining 
total dendritic length77,78. Likewise, the total dendritic 
size of pyramidal cells seems to be homeostatically 
conserved79.

We are still far from understanding how the concerted 
actions of intracellular molecular mechanisms and extra
cellular signals can generate the characteristic branching 
patterns of the different types of neuron. Axonal and 
dendritic growth is also known to be affected by elec
trical activity and synapse formation56,80,81. These effects 
have not yet been incorporated in models. Because of the 
widely different timescales, including the effect of elec
trical activity on the developmental process may require 
an adaptive modelling approach in which the model can 
switch from simulating development to the simulation 
of short periods of activity.

Axon guidance
A key process in the guidance of axons to their targets 
is chemotaxis, whereby growth cones detect and follow 
gradients of targetderived diffusible molecules or mol
ecules bound to the extracellular matrix or to other cells. 
Although recent work has uncovered many of the mol
ecules that are involved in this process, the mechanisms 
underlying chemotaxis are still unclear.

A series of related theoretical models address the 
implications for chemotaxis of the binding of diffus
ible molecules to their receptors at the growth cone. 
Growth cones are thought to sense concentration 
gradients by comparing receptor binding across their 
spatial extent. Therefore, the noise resulting from fluc
tuations in receptor binding should not be larger than 
the spatial difference in receptor binding. One model  
of the physics of receptor–ligand interactions1 estimated 
the smallest gradient in ligand concentration that the 
growth cone can detect. A further study showed that  
the experimentally observed decline in gradient detec
tion on either side of an optimal ligand concentration82 
can be quantitatively reproduced in an extended model83 
that also includes spatial and temporal averaging of the 
binding state of receptors. A Bayesian ideal observer of 
gradient detection by growth cones was developed in 
another model84 that is also based on the hypothesis that 
a principal constraint on gradient detection is intrinsic 
receptor binding noise (FIG. 4c,d). This model predicted 
how the response of an axon should vary with gradient 
steepness and absolute concentration. This prediction 
was confirmed84 in an experimental study that revealed 
the degree of sensitivity of the growth cone to gradients 
of ligand molecules to be much higher than previously 
reported82.

More detailed models have also taken into account 
filopodial dynamics. A filopodiumbased model for 
axon guidance was developed85 in which new filopodia 
are preferentially generated in the region of the growth 
cone surface where ligand binding is highest (in the case 
of attraction) or lowest (in the case of repulsion), and 
the growth cone turns towards the average direction of  

the filopodia. One prediction of the model, which is not yet 
tested experimentally, was that the growth cone may dis
play qualitatively different sensitivity curves to attractive  
and repulsive gradients.

Biochemical events in the cytoplasm underlie the 
morphological changes in the growth cone during axon 
guidance. A model based on the RHO GTPase system  
showed that activation of a cell division cycle 42 
(CDC42)specific guanine nucleotide exchange factor 
(GEF) results in a switchlike response in the activities of 
GTPases86. This was proposed to constitute the molecu
lar basis for the decision mechanism determining the 
direction of growth cone expansion.

Challenges for future models of axon guidance 
include the need to take into account the concerted 
action of attractive and repulsive cues, the role of contact 
mediated versus diffusive cues, adaptation of growth cones 
to changes in absolute ligand concentration, and changes 
in sensitivity to cues as axons traverse into another leg 
of their journey towards their target. These factors can 
be studied using simulation frameworks for axon guid
ance87,88. For example, the framework in REF. 88 provides 
a set of mathematical tools for simulating the migra
tion of multiple axons through complex environments 
that may include any number of sources of membrane 
bound or diffusible guidance factors. Inspiration can 
also be drawn from parallels between axon guidance and  
chemotaxis in systems such as bacteria, leukocytes 
and amoebae (Dictyostelium) in which mathematical  
modelling has been fruitful89.

Network formation
Once they arrive in their target region, axons start to 
form synaptic connections. This process involves a great 
deal of structural plasticity, with formation and deletion 
of synapses, and outgrowth and retraction of axons and 
dendrites, causing previously unconnected neurons to 
become connected and vice versa90–95. Many forms of 
structural plasticity are dependent on the neuron’s level 
of electrical activity41,67,80,81,95–97, and thereby often seem 
to act to maintain the average electrical activity of the 
neuron at a particular level (homeostasis)98. Some of 
the models of structural plasticity described below have 
studied the implications of this homeostatic structural 
plasticity.

In one model of homeostatic plasticity26,99–101, the 
axonal and dendritic processes of each neuron are rep
resented by a single, circular field around its cell body 
(FIG. 6A). High levels of neuronal activity cause these 
neuritic fields to contract, and low levels cause them 
to expand. Several interesting phenomena emerge: the 
neurons selforganize into a network and go through a 
transient phase in which synaptic connectivity is much 
higher than in the final state. The network ultimately 
reaches global homeostasis of network activity, even 
though the neurons can monitor only their own activity 
level. The model predicted, perhaps counterintuitively, 
that too much inhibition prevents the normal pruning 
of exuberant connections and results in a network with 
high overall connectivity and strongly oscillatory elec
trical activity. This may clarify experimental findings 
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showing that enhanced inhibition during develop
ment resulted in epileptic networks in adulthood102,103. 
Furthermore, the model is capable of self repair, auto
matically generates size differences between the neuritic 

fields of excitatory and inhibitory cells (although they 
have identical growth rules), and shows that the devel
opmental course of connectivity and activity in cultures 
of dissociated cortical cells as well as the formation of 

Figure 6 | Models that investigate the implications of homeostatic structural plasticity for network formation. Synaptic 
connectivity exhibits a high degree of plasticity, and synapse formation and deletion often seem to take place in response to 
changes in a neuron’s activity and act to maintain its activity at a particular level. Some theoretical models have been used  
to study the implications of this homeostatic structural plasticity. A | In one model, the neurite size of each neuron is 
represented by a circular field99, 101. This field expands when the neuron’s activity is below a set level and retracts when it is 
above this level. Cells connect synaptically when their fields overlap, with the connection strength being proportional to the 
area of overlap. As neurons with initially randomly sized radii (middle panel) grow, they begin to form more — and stronger — 
connections, increasing the level of activity in the network. As neurons adjust the size of their neurite fields, they eventually 
reach equilibrium (bottom panel), in which all radii remain constant and the average activity level of all neurons is at the set 
level.  
Ba | In a model that takes a more detailed approach107, each neuron has presynaptic elements (shown by arrows) and 
postsynaptic elements (shown in green and red), representing axonal boutons and dendritic spines, respectively. Bb | The pre- 
and postsynaptic elements merge randomly to form synapses. Bc | When neuronal activity is lower than a set value, neurons 
generate more excitatory postsynaptic elements (elements that can receive connections from excitatory cells are shown in 
green), thereby enhancing their probability of receiving incoming excitatory connections. Bd | When activity is higher than 
this set value, neurons reduce excitatory postsynaptic elements and increase inhibitory ones (elements that can receive 
connections from inhibitory cells are shown in red). In this example, activity increases presynaptic elements. Be | As the 
number of presynaptic and postsynaptic elements change according to the level of activity, synaptic connections break and 
new ones form. The red cross indicates a deleted postsynaptic element, and the dashed arrow shows the corresponding 
presynaptic element that has retracted and now projects to another neuron. As neurons change their connectivity, the 
network eventually reaches an equilibrium in which the average activity of all neurons is at their set value. This 
activity-dependent rewiring of connections can account for the inverse relationship between the rate of cell proliferation 
and the amount of rewiring in the hippocampal dentate gyrus107. Cell bodies of excitatory cells are shown in green, the cell 
body of the inhibitory cell is red. R, radius of the circular field. Part A is reproduced, with permission, from REF 105 © (2007) 
Elsevier. Part B is modified, with permission, from REF 107 © (2008) Wiley.
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Critical connectivity
A pattern of connectivity 
between neurons in which each 
electrically active neuron 
causes an average of one other 
neuron to become active, so 
that network activity neither 
dies out nor increases.

Motor unit size
The number of muscle fibres 
that is contacted by a given 
motor neuron.

Polyneuronal innervation
In mononeuronal innervation,  
a target cell is innevervated  
by just a single neuron; in 
polyneuronal innervation,  
by more than one neuron.

Hebbian learning
Synaptic connections between 
a presynaptic neuron and a 
postsynaptic neuron are 
strengthened when their 
activity is correlated (cells that 
fire together wire together).

critical connectivity can be produced by homeostatic 
structural plasticity104–106.

In a more detailed model of activitydependent struc
tural plasticity107, each neuron has a separate number of 
presynaptic elements (axonal boutons) and postsynaptic 
elements (dendritic spines), and synaptic connections are 
formed by randomly combining pre and postsynaptic 
elements, the number of which changes in a homeostatic 
way as a function of the cell’s level of electrical activity 
(FIG. 6 B). Changes in the number of elements may cause 
an existing synapse to break, but the remaining pre or 
postsynaptic element continues to be available for syn
apse formation. In this way, synaptic connections can be 
rerouted (synaptic rewiring). The model showed that 
the inverse relationship between cell proliferation and 
synaptic rewiring, observed experimentally with the 
embedding of young neurons in the adult hippocam
pal dentate gyrus, can arise as the result of the neurons’ 
need for activity homeostasis107. The model also pre
dicted which stimulation regimes can most effectively 
promote network repair after a local cortical lesion or 
reduction in input108.

In the models described above, the growth rules 
of a neuron depend only on the neuron’s own level of 
activity. Another model of structural plasticity has been 
developed109 in which the correlation between pre and 
postsynaptic activity controls synapse formation and 
elimination but without explicitly incorporating synaptic 
rewiring. As in the previous models, the rate of synapse 
elimination increases with postsynaptic activity, leading 
to homeostasis of firing rate.

In another model110 it was shown that correlation
based synaptic rewiring can lead to the formation of 
smallworld connectivity. However, the rewiring rules 
use information that is not locally available at the neuron, 
such as its synchrony of firing with neurons to which it 
is not connected. Models that incorporate (shortterm) 
synaptic rather than structural plasticity also predicted 
the emergence of particular connectivity structures, such 
as critical connectivity111.

Models of structural plasticity so far represent neuro
nal morphology in a highly abstract manner. Simulation 
frameworks such as NETMORPH63 and CX3D23 grow 
more realistic neuronal morphologies, but in these 
models outgrowth and synapse formation are, as yet,  
independent of electrical activity.

Synaptic competition
During development, cells are initially innervated by 
more axons than are ultimately maintained in adult
hood. In the neuromuscular system, axonal branches 
are withdrawn until each muscle fibre is innervated 
by a single motor axon. Similarly, in the visual system, 
the formation of ocular dominance columns involves 
retraction of axonal branches. The models described 
below study competition between innervating axons 
or synapses (competition models are reviewed in 
REFS 112,113).

The dual constraint model, which was proposed 
some years ago114–116, remains an influential model for 
the development of mononeuronal innervation in the 

neuromuscular junction. It combines competition for a 
postsynaptic resource located in the muscle fibre with 
competition for a presynaptic resource located in each 
motor neuron. It offers an explanation for various exper
imental observations, such as the reduction in motor unit 
size during development117 and the occurrence of persist
ent polyneuronal innervation in partial denervation experi
ments118. The model predicted that axonal branches can 
retract in the absence of axonal branches from other 
motor neurons — that is, without competition. There are 
conflicting experimental results in relation to the pos
sibility of this socalled intrinsic withdrawal119–122, and it 
remains to be unequivocally confirmed experimentally. 
What the pre and postsynaptic resources in the dual 
constraint model precisely represent biologically has not 
been made clear.

Another model of axonal competition123 is explicitly 
based on neurotrophins as targetderived resources, and it  
implements in a fully dynamical way the release and  
degradation of neurotrophins, the production, insertion 
and turnover of neurotrophin receptors, the binding of 
neurotrophins to their receptors at axon terminals, and 
uptake of bound neurotrophins (FIG. 7A,B). The model 
predicted that competition requires neurotrophins 
to upregulate the number of their own receptors. 
Importantly, this prediction was recently confirmed 
experimentally by a study showing that neurotrophins 
promote expression of their own receptors, and that 
perturbation of this feedback disrupts the dynamics of 
competition124. In the same study, a model was presented 
that is very similar to the previous one but, in addition 
to competition for neurotrophic factors, also incorpo
rates direct negative influences between neurons (for 
other models based on direct negative interactions, see 
REFS 125,126). Both models123,124 consider a single post
synaptic neuron with a number of innervating neurons, 
and need to be extended to a situation in which there are 
multiple postsynaptic targets — as occurs in the neu
romuscular junction, for example. Furthermore, there is 
no direct role of electrical activity in these models, as in 
previous less biophysically explicit neurotrophinbased 
models127–131 that include activitydependent release and 
uptake of neurotrophins to model the development of 
ocular dominance columns.

Many models132–136 have shown that ocular dominance 
and orientation columns can arise through Hebbian learning  
(steered by spontaneous or sensorydriven activity) 
complemented by some form of synaptic competition, 
so that when the synaptic strength of one input grows, 
the strength of the others shrinks. Whereas many mod
els phenomenologically enforce competition by requir
ing the total strength of all synapses onto a postsynaptic 
cell to remain constant (synaptic normalization)137, oth
ers implement putative competitive mechanisms, such 
as dependence on neurotrophins127–131 and modified 
Hebbian learning rules. A Hebbian learning rule model 
that uses a sliding threshold to determine whether long
term potentiation (LTP) or longterm depression (LTD) 
occurs138 produces a variety of receptive fields similar to 
those seen experimentally, and experimental evidence 
for this learning rule was subsequently found139. More 
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recent models have shown that spike timing-dependent 
plasticity (STDP) can also give rise to ocular dominance 
columns140 and orientation selectivity141, and that corti
cal reorganization following retinal damage can be better 
explained by STDP than by standard, correlationbased, 
Hebbian rules142. All the models of ocular dominance 
columns that have been created are able to explain the 
normal formation of columns, but no single model can 
yet explain all the experimental data, including the 
effects of various experimental manipulations134. The 
more abstract models, based on competitive learning, 
seem to do best in accounting for most experimental 

findings132,143–145. Important challenges for future model
ling studies are to translate these abstract models in more 
biologically based models and to help to elucidate the 
contribution and interaction of molecular cues146, spon
taneous activity and sensorydriven activity in column 
formation147.

Topographic map formation
A topographic map results from the ordered projection 
of axons from an input structure, such as the retina, to 
higher target structures, such as the tectum or superior 
colliculus, so that adjacent cells in the input structure 

Figure 7 | Modelling synaptic competition and 
topographic map formation. A | Principles incorporated 
into a model of neurotrophin-mediated reduction of axonal 
innervation123. In this model, neurotrophin, which is needed 
for axon survival, is released by the target into the extracellular 
space and is bound to receptors at the axon. Binding of 
neurotrophin to receptors on the axon upregulates the 
production of neurotrophin receptors, as recently observed 
experimentally for nerve growth factor (NGF) and its 
receptor124. The more receptors an axon has, the more 
neurotrophin it can bind, which further increases the axon’s 
number of receptors so that it can bind even more 
neurotrophin — at the expense of other axons. This positive 
feedback amplifies small differences in receptor number that 
might occur because of factors such as differences in 
presynaptic activity. B | This model has revealed how the 
upregulation function (which determines how the rate of 
receptor production varies with bound neurotrophin) might 
influence the pattern of innervation. The upper two graphs 
show upregulation functions and the lower two graphs show 
how the axons’ amount of bound neurotrophin changes over 
time (if there is no bound neurotrophin, the axon has 
disappeared). Assuming that five axons are present initially, a 
linear upregulation function (upper left panel) results in a 
single innervating axon surviving (lower left panel). With a 
bounded function (upper right panel), multiple innervation 
develops (lower right panel). C | By two joint processes — 
synaptic strength modification and marker induction — a 
model showed how a retinal EphB gradient can be translated 
into a tectal ephrinB gradient, thereby creating a topographic 
mapping between retina and tectum161. The EphB densities 
are fixed, whereas the ephrinB densities can change. Ca | Each 
synaptic strength (shown by the size of the synaptic circle) is 
continually increased (shown by the + symbol) or decreased 
(shown by the – symbol) according to how closely the EphB 
density in the retinal cell resembles the ephrinB density in the 
tectal cell. Cb | Each ephrinB density is continually changed 
(shown by arrows below the tectal cells) to reduce the 
difference between the current ephrinB density and an 
inductive signal at each tectal cell. The inductive signal, 
coming from the retinal cells (shown by arrows along the 
axons), is made up of contributions from the axons innervating 
the cell. Each contribution is proportional to the strength of 
the synapse and the EphB density in the parent retinal cell. In 
this way, the EphB gradient is translated into an ephrinB 
gradient, whereby retinal cells with high EphB come to project 
to tectal cells with high ephrinB. In the EphA–ephrinA system, 
with slightly different rules, retinal cells with high EphA come 
to project to tectal cells with low ephrinA. Part B is 
reproduced, with permission, from REF 123 © (1999) The 
Royal Society. Part C is reproduced, with permission, from REF 
161 © (2006) The Company of Biologists.

Spike timing-dependent 
plasticity
Changes in the strength of 
synapses that depend on the 
relative timing of the 
presynaptic and postsynaptic 
action potentials.

Competitive learning
A learning rule whereby 
changes in synaptic strength 
take place only for synapses 
that impinge on the output 
cells that respond most 
strongly to an input.
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project to adjacent cells in the output structure148. The 
precise mechanisms by which such maps are formed 
during development are unknown, but they include 
molecular recognition, correlated electrical activity, neu
rotrophic factors, and outgrowth and retraction of axons 
and synapses. Computational models have investigated 
the contribution of these mechanisms to topographic 
map formation132,148,149. Although many models show 
map formation under normal circumstances, the chal
lenge is to account for the various experimental results 
from surgical and genetic manipulations150–152.

Activity-independent models of map formation. 
According to Sperry’s chemoaffinity hypothesis153 — ini
tially formulated for the retinotectal system — each reti
nal ganglion cell carries information about its position 
within the retina in the form of a molecular label, and 
the axon of each retinal ganglion cell makes a connection 
with the cell in the target structure (tectum or superior 
colliculus) cell carrying the matching label.

A number of models154–157 — based on this hypoth
esis and on the later discovered evidence for such 
labels in the form of gradients of Eph receptors in 
the retina and their ligands, the ephrins, in the target 
structure158 — made these qualitative ideas more pre
cise and have shown that mechanisms that use fixed 
labels can produce ordered maps, but are likely to be 
too rigid to account for the full map plasticity that has 
been observed149,157.

In the marker induction model159,160, the retinal 
labels are fixed, whereas the labels of the target cells 
can change. The retinal cells continuously transfer their 
labels onto the (initially unlabelled) target cells. A recent 
version of this model161 explains the range of abnormal 
maps that were formed in EphA knockin and knockout 
mice151 (FIG. 7C). The model predicts what corresponding 
changes in ephrinA distribution in the colliculus should 
be found to be associated with the abnormal maps. The 
specific mechanism incorporated in the model, namely 
that labels in the target cells can be regulated by retinal 
labels, is amenable to experimental testing.

Activity-dependent models of map formation. In 
activitydependent models of map formation, neigh
bourhood information in the retina is not encoded by 
molecular labels but by correlations in neural activity. 
Both in the retina and in the target structure, cells that 
are closer together are more likely to be active concur
rently than cells that are farther apart, owing to lateral 
connections or the statistics of sensory input. Models 
have shown that if synaptic connections are strength
ened in a Hebbian fashion, topographic maps emerge, 
as connections from retinal neighbours to neighbours in 
the target structure will be strengthened preferentially162. 
Models incorporating more complex rules for modify
ing synaptic strengths, such as STDP, also produce  
topographic maps140,142.

As activityindependent mechanisms based on molec
ular markers are already sufficient for map formation, 
what is the role of activity? One common view is that 
activity refines a map that is already formed by other 

mechanisms. Because no single mechanism can probably 
explain all the data concerning map formation, an impor
tant role for modelling would be to help to tease out the 
contributions of the different mechanisms involved.

Recently, a multicomponent model of map forma
tion was developed163 to study the interactions between 
molecular guidance cues, trophic factor release, spon
taneous neural activity, STDP, synapse formation and 
deletion, and axon growth, branching and retraction. 
Although results from complex models are usually dif
ficult to interpret, the authors found that instructive 
cues for axonal growth and map formation seem to be 
mediated first by molecular guidance and then by neural 
activity. As connection patterns ultimately result from 
axon growth and branching, models should frame map 
formation in terms of these processes because the physi
cal and geometrical aspects of the axon place constraints 
on the development of connections163,164.

Perspectives
Modelling studies in neuroscience are mostly concerned 
with the functioning of the mature brain. However, 
models are equally indispensable in achieving a true 
understanding of neural development.

The principles that enable neurons and networks to 
construct themselves will not be revealed by just iden
tifying all of the genes and proteins involved. Even if 
all of the components and interactions are completely 
known, their collective behaviour is often difficult to 
deduce. Even a set of simple interactions can produce 
rich and unexpected dynamics. Models allow us to 
explore how highlevel phenomena and dynamics (for 
example, neural tube formation) arise from the multi
tude of lowerlevel processes and interactions (for exam
ple, intercellular signalling, mechanical interactions, cell 
division, motion and adhesion).

In general, the most useful models are those in which 
the variables and parameters have a clear interpretation 
in the underlying biology, which enables comparison 
with experimental findings and experimental testing of 
model predictions. Many models outlined in this Review 
aim to account for, or ‘postdict’165, existing phenomena 
or data18,23,43,143,161. Several of the models have also made 
clear predictions, which were confirmed in the same 
study51,84, confirmed in a later study123, or are still await
ing experimental testing. Both predictions and ‘postdic
tions’ are valuable in advancing our understanding of 
neural development165.

A challenge for future modelling studies of the early 
developmental stages (neural tube formation, cell migra
tion and differentiation) is to further integrate mechanical 
processes (such as motion, adhesion and changes in cell 
shape) with intracellular genetic and protein networks. 
Changes in the cells’ local extracellular environment as 
cells migrate create new input to the genetic networks 
that regulate cell motion and migration. Models provide 
the unique opportunity to explore the pattern generating 
potential of these complex reciprocal interactions.

In neuronal morphogenesis, axon–dendrite differen
tiation has been little explored but is a fruitful area for 
modelling, and models can help to unravel whether some 
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of the identified cellular and molecular mechanisms can 
provide feedback loops that are necessary for the estab
lishment of neuronal polarity. A mechanistic insight into 
how the characteristic branching patterns of axons and 
dendrites arise from the concerted actions of intracellular 
pathways, extracellular signals and electrical activity is 
also still in its infancy. A useful strategy would be to try 
and translate some of the successful phenomenological 
models58,61 into more biophysically based, mechanistic 
models, to investigate how the modulation of elonga
tion and branching found in phenomenological models 
can emerge naturally from local, underlying biological 
processes.

A challenge for models of the establishment of con
nectivity, such as ocular dominance and topographic 
map formation, is to help to elucidate the contribution 
and interaction of molecular cues, spontaneous activity 
and sensorydriven activity. These models may also be 
framed more in terms of axon and dendrite outgrowth, 
as neuronal morphology will place important geometri
cal constraints on synaptic connectivity. To what extent, 
for example, can neuronal morphology, combined with 
a simple synapse formation rule based on proximity of 
axons and dendrites, already account for specific con
nectivity patterns166? In general, very few development 
models107 have incorporated connectivity changes at the 

level of formation or deletion of synapses and outgrowth 
or retraction of axons and dendrites.

Important determinants of synaptic connectiv
ity, such as neurite outgrowth, synaptic strengths and 
intrinsic neuronal excitability, are modulated by electri
cal activity. This gives rise to complex reciprocal inter
actions, with connectivity influencing activity dynamics 
and activity in turn affecting connectivity. Changes in 
connectivity thereby often seem to act to keep the aver
age electrical activity of the neuron at a particular level98. 
Models have only just begun to address how this striving 
of neurons for activity homeostasis could shape synap
tic connectivity patterns99,105,106,107 as well as the intrinsic 
properties of neurons167,168. Activity homeostasis could 
serve as a general organizing principle for network for
mation, which may selfadjust neurons and connectivity 
to achieve and maintain functional performance.

Experiments provide valuable knowledge about the 
individual components involved in neural develop
ment, but to reason rigorously how the multitude of 
interactions among these components can produce the 
immense complexity of the nervous system will remain 
a great challenge that continues to require the help of 
mathematical and computational models. These efforts 
will ultimately help reveal the algorithmic principles by 
which the nervous system constructs itself.
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	Abstract | The development of the nervous system is an extremely complex and dynamic process. Through the continuous interplay of genetic information and changing intra- and extracellular environments, the nervous system constructs itself from precursor cells that divide and form neurons, which migrate, differentiate and establish synaptic connections. Our understanding of neural development can be greatly assisted by mathematical and computational modelling, because it allows us to bridge the gap between system-level dynamics and the lower level cellular and molecular processes. This Review shows the potential of theoretical models to examine many aspects of neural development.
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	Figure 1 | Modelling neural tube formation. A | A computational model of neural tube formation7 contains genetic switches that regulate the specification of ectoderm into neuroectoderm (neural plate) and the differentiation of neuroectoderm cells into neurons. Bone morphogenetic proteins (BMPs), Sonic hedgehog (SHH) and signal transduction triggered by the binding of Delta to Notch, act on these switches. The genetic switches, in turn, regulate cell adhesion, movement and division. B | The model showed how interactions between gene expression, intercellular signalling, and cell division and motion can lead to neural tube formation. The dorsal part of a transverse embryonic section is shown at successive times. Ba | Before invagination, the nuclei of cells expressing the neural plate gene Notch (shown in green) are observed in the area that will become the neural plate. Attachment points between cells are shown in red. Bb | Neural plate cells express Notch alone, or Notch together with the neuronal gene Delta (shown in yellow). Cell membranes are shown in shades of blue, and lighter colours indicate larger concentrations of Delta. The neural plate starts invaginating while epithelial cells grow over the neural cells, forming the neural ‘folds’. Bc | Neural tube formation as a result of the joint effect of neural cells migrating downwards and epithelial cells dividing and pushing the neural folds inwards. C | If the model is tested under conditions of high cell division, ingression of a Delta- and Notch-expressing neural cell mass takes place (resembling the initial stage of secondary neurulation). D | A more advanced, three-dimensional model of neurulation4 incorporates a detailed description of the mechanical forces at the subcellular, cellular and tissue levels. The model produces morphogenetic movements closely matching those of the developmental stages of axolotl neurulation. The neural plate is shown in yellow, neural folds are shown in blue and non-neural ectoderm is shown in green. Parts B and C are modified, with permission, from REF 7 © (1998) Wiley. Part D is reproduced, with permission, from REF 4 © (2008) IOP Science.
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	Figure 2 | Modelling the dorsoventral regionalization of the neural tube. A computational model18 has been used to study the specification of V3 interneurons (V1–V3 are distinct populations of ventral interneurons) and motoneurons (MNs) under the influence of Sonic hedgehog (SHH) secreted from the floorplate. a | A schematic transverse cross section of the neural tube. Labels on the left side of the tube indicate mature cell fates that will emerge from each region. SHH secreted by the floorplate diffuses through the neural tube and the concentration of SHH determines the fate of cells. SHH stimulates intracellular GLI1 expression, which in turn induces differentiation into V3 interneurons. As SHH concentration rises above a threshold concentration, it stimulates GLI1 production to the point at which GLI1 positively feeds back on its own expression. The on–off GLI1 expression interface demarcates the V3–MN boundary. b | The model predicted how three types of mechanisms that affect SHH transport modify the SHH extracellular gradient and shift the position of the V3–MN boundary. Reducing SHH diffusivity, which causes accumulation of SHH near its source, can, paradoxically, increase the signalling range of SHH, leading to a dorsal shift in the V3–MN boundary. Conversely, enhancing SHH diffusivity can lead to a ventral shift in the boundary. Sequestering of free SHH by transmembrane proteins (shunting) decreases SHH over the entire tissue, shifting the boundary ventrally. Part b is modified, with permission, from REF 18 © (2006) The Company of Biologists.
	Figure 3 | Modelling cell proliferation, migration and differentiation. A | During development of the cortex, cells of the deeper cortical layers are generated before those of the superficial layers. A computational model23 showed that a simple set of cellular instructions can produce this inside-out order of cortical development. In the model, neuron precursors were instructed to behave according to the following rules: they move randomly until they touch a radial fibre on which they fix themselves, they migrate distally along the fibre, leave the fibre and stop migration when they encounter a layer 1 (L1) cell. Aa | L6 neuron precursors are produced by asymmetrical division of the progenitor cells. They migrate along radial glial processes. Ab | When the neuron precursors detect the top-most L1 cells, they stop migrating by detaching from the radial fibres. Owing to the mechanical interactions between cells, L1 is pushed upwards. Ac | When L5 neurons are produced, they follow the same path, passing through L6 cells until they contact L1, progressively pushing L1 upwards. Ad | The same process occurs for L4 and L2–L3. A few cells end up in the wrong layer, as observed in the cortex176. B | Computational models have also been used to study the mechanisms by which cells can acquire different fates. One such model of cell differentiation starts with a homogeneous population of cells expressing equal concentrations of the membrane-bound ligand Delta and its receptor Notch23,30. Each cell activates Notch in its neighbouring cells, depending on its own Delta level, while decreasing its own Delta concentration based on its Notch level. Over time, this results in populations of cells with high Notch or high Delta levels. Figure is reproduced, with permission, from REF 23 © (2009) Frontiers Research Foundation.
	Figure 4 | Modelling axon–dendrite differentiation and axon guidance. a | Theoretical models have been used to analyse how a single, rapidly growing axon could emerge from neurites of equal potential. A model showed how shootin 1, a key regulator of axon outgrowth, accumulates in neurite tips in a length-dependent manner51, and how the dynamics of shootin 1 causes one neurite from a group of neurites of similar length to outgrow its siblings and become the axon. Shootin 1 is in a stochastic manner actively transported from the cell body to the growth cone, from where it diffuses back to the cell body. This leads to preferential accumulation of shootin 1 in long neurites, because retrograde diffusion, but not active anterograde transport, becomes weaker with length. The strength of anterograde transport and retrograde diffusion is indicated by the thickness of the arrows. At the growth cone, shootin 1 induces outgrowth52. This therefore results in a positive feedback loop that amplifies small stochastic fluctuations in shootin 1. b | Shootin 1 accumulation and neurite length fluctuate stochastically until one neurite predominately accumulates shootin 1 and undergoes rapid outgrowth. A similar course of events was observed experimentally51. c | Theoretical models can also be used to understand the mechanisms by which an axonal growth cone ‘reads’ extracellular gradients of guidance molecules and translates this into growth cone turning. A Bayesian model84 of axon guidance showed that a growth cone with ‘noisy’ receptors (receptors on which ligand binding fluctuates) can most reliably estimate the direction of an external ligand gradient if it assigns more weight to the signals from bound receptors that are further away from the growth cone’s centre. This is the optimal rule for deciding what the direction of the gradient is. A schematic growth cone is shown in an external concentration gradient of ligand molecules. Ligand molecules bind probabilistically to receptors. Signals from bound receptors are then combined to decide the most consistent gradient direction for that pattern of ligand binding. d | The model with this optimal decision rule was used to predict — for different gradient steepnesses and concentrations of the ligand nerve growth factor (NGF) — the performance of the growth cone in estimating the correct gradient direction. The percentages refer to the fractional change in concentration across 10 μm. The performance is better at higher gradient steepness and drops off faster at higher than at lower ligand concentrations. Furthermore, the width of the curve increases with gradient steepness. The performance of real growth cones was found to show the same relationship with gradient steepness and ligand concentration84, suggesting that real growth cones might employ such an optimal decision rule. Parts a and b are reproduced, with permission, from REF 51 © (2010) Macmillan Publishers Ltd. All rights reserved. Parts c and d are reproduced, with permission, from REF 84 © (2009) National Academy of Sciences.
	Figure 5 | Modelling neurite elongation and branching. An important question is how the morphology of axonal and dendritic trees is determined. Theoretical models have provided insight into the possible mechanisms through which branching patterns are controlled. a | In a phenomenological model of neurite outgrowth60-62, each neurite starts with an initial segment with a growth cone at the tip. The growth cone elongates the neurite and can branch, creating two daughter growth cones (branching events are shown by an arrow and red growth cones). Each growth cone in the growing tree has a branching probability that is the product of three factors: a factor that decreases with developmental time (shown by a blue line), a factor that changes with the growth cone’s centrifugal order (not shown) and a factor that decreases with the momentary number (n) of growth cones in the tree (shown by a red line). This last factor reflects competition between growth cones for resources. Parameter E denotes the strength of competition. After each branching event, the branching probability thus decreases. In this example, E = 0.5 and τ = 3.7 days. b | Six model-generated neurons177. The model parameters, such as competition strength, were chosen so that the morphology of the generated trees best matched the morphology of layer 2–3 rat cortical pyramidal neurons. Axons are shown in green and dendrites are shown in red. c | In a biophysical model of neurite outgrowth68, tubulin is produced in the cell body and transported by diffusion and active transport to the growth cones, where assembly in microtubules elongates the neurite. Neurite outgrowth is further modulated by microtubule-associated proteins (MAPs), with phosphorylated MAP2 favouring branching (as a result of weak crosslinking of microtuble bundles by phosphorylated MAPs) and dephosphorylated MAP2 favouring elongation (as a result of strong crosslinking)178. Phosphorylation and dephosphorylation increase with the intracellular calcium concentration. Calcium enters along the whole neurite and diffuses inside the cell. d | Depending on the relative rates of calcium-dependent MAP phosphorylation and dephosphorylation, and in interaction with the calcium dynamics, the model produces a variety of characteristic dendritic trees. The results of two parameter settings are shown. If phosphorylation reaches its half-maximum rate at a higher calcium concentration than dephosphorylation, dendrites are produced in which branching increases distally (left side). If dephosphorylation reaches its half-maximum rate at a higher calcium concentration than phosphorylation, trees with elongated distal dendrites are generated (right side). High calcium concentration is shown in yellow. T, developmental time. Part b is reproduced, with permission, from REF 177 © (2010) Frontiers Research Foundation. Part c is reproduced, with permission, from REF 70 © (2006) BioMed Central. Part d is modified, with permission, from REF 68 © (2001) Elsevier. 
	Axon guidance
	Network formation
	Figure 6 | Models that investigate the implications of homeostatic structural plasticity for network formation. Synaptic connectivity exhibits a high degree of plasticity, and synapse formation and deletion often seem to take place in response to changes in a neuron’s activity and act to maintain its activity at a particular level. Some theoretical models have been used to study the implications of this homeostatic structural plasticity. A | In one model, the neurite size of each neuron is represented by a circular field99, 101. This field expands when the neuron’s activity is below a set level and retracts when it is above this level. Cells connect synaptically when their fields overlap, with the connection strength being proportional to the area of overlap. As neurons with initially randomly sized radii (middle panel) grow, they begin to form more — and stronger — connections, increasing the level of activity in the network. As neurons adjust the size of their neurite fields, they eventually reach equilibrium (bottom panel), in which all radii remain constant and the average activity level of all neurons is at the set level. Ba | In a model that takes a more detailed approach107, each neuron has presynaptic elements (shown by arrows) and postsynaptic elements (shown in green and red), representing axonal boutons and dendritic spines, respectively. Bb | The pre- and postsynaptic elements merge randomly to form synapses. Bc | When neuronal activity is lower than a set value, neurons generate more excitatory postsynaptic elements (elements that can receive connections from excitatory cells are shown in green), thereby enhancing their probability of receiving incoming excitatory connections. Bd | When activity is higher than this set value, neurons reduce excitatory postsynaptic elements and increase inhibitory ones (elements that can receive connections from inhibitory cells are shown in red). In this example, activity increases presynaptic elements. Be | As the number of presynaptic and postsynaptic elements change according to the level of activity, synaptic connections break and new ones form. The red cross indicates a deleted postsynaptic element, and the dashed arrow shows the corresponding presynaptic element that has retracted and now projects to another neuron. As neurons change their connectivity, the network eventually reaches an equilibrium in which the average activity of all neurons is at their set value. This activity-dependent rewiring of connections can account for the inverse relationship between the rate of cell proliferation and the amount of rewiring in the hippocampal dentate gyrus107. Cell bodies of excitatory cells are shown in green, the cell body of the inhibitory cell is red. R, radius of the circular field. Part A is reproduced, with permission, from REF 105 © (2007) Elsevier. Part B is modified, with permission, from REF 107 © (2008) Wiley.
	Synaptic competition
	Figure 7 | Modelling synaptic competition and topographic map formation. A | Principles incorporated into a model of neurotrophin-mediated reduction of axonal innervation123. In this model, neurotrophin, which is needed for axon survival, is released by the target into the extracellular space and is bound to receptors at the axon. Binding of neurotrophin to receptors on the axon upregulates the production of neurotrophin receptors, as recently observed experimentally for nerve growth factor (NGF) and its receptor124. The more receptors an axon has, the more neurotrophin it can bind, which further increases the axon’s number of receptors so that it can bind even more neurotrophin — at the expense of other axons. This positive feedback amplifies small differences in receptor number that might occur because of factors such as differences in presynaptic activity. B | This model has revealed how the upregulation function (which determines how the rate of receptor production varies with bound neurotrophin) might influence the pattern of innervation. The upper two graphs show upregulation functions and the lower two graphs show how the axons’ amount of bound neurotrophin changes over time (if there is no bound neurotrophin, the axon has disappeared). Assuming that five axons are present initially, a linear upregulation function (upper left panel) results in a single innervating axon surviving (lower left panel). With a bounded function (upper right panel), multiple innervation develops (lower right panel). C | By two joint processes — synaptic strength modification and marker induction — a model showed how a retinal EphB gradient can be translated into a tectal ephrinB gradient, thereby creating a topographic mapping between retina and tectum161. The EphB densities are fixed, whereas the ephrinB densities can change. Ca | Each synaptic strength (shown by the size of the synaptic circle) is continually increased (shown by the + symbol) or decreased (shown by the – symbol) according to how closely the EphB density in the retinal cell resembles the ephrinB density in the tectal cell. Cb | Each ephrinB density is continually changed (shown by arrows below the tectal cells) to reduce the difference between the current ephrinB density and an inductive signal at each tectal cell. The inductive signal, coming from the retinal cells (shown by arrows along the axons), is made up of contributions from the axons innervating the cell. Each contribution is proportional to the strength of the synapse and the EphB density in the parent retinal cell. In this way, the EphB gradient is translated into an ephrinB gradient, whereby retinal cells with high EphB come to project to tectal cells with high ephrinB. In the EphA–ephrinA system, with slightly different rules, retinal cells with high EphA come to project to tectal cells with low ephrinA. Part B is reproduced, with permission, from REF 123 © (1999) The Royal Society. Part C is reproduced, with permission, from REF 161 © (2006) The Company of Biologists.
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