My home page | Home

Computational perspectives on adult neurogenesis

Carlson, K. D., Rothganger, F., and Aimone, J. B. (2017). In: Van Ooyen, A., and Butz-Ostendorf, M., eds. The Rewiring Brain: A Computational Approach to Structural Plasticity in the Adult Brain. San Diego: Academic Press, pp. 425-441.


Abstract

The continuous integration of young neurons into the adult brain represents a novel form of structural plasticity and has inspired the creation of numerous computational models to understand the functional role of adult neurogenesis. These computational models consist of abstract models that focus on the utility of new neurons in simple neural networks and biologically based models constrained by anatomical data that explore the role of new neurons in specific neural circuits such as the hippocampus. Simulation results from both classes of models have suggested a number of theoretical roles for neurogenesis, such as increasing the capacity to learn novel information, promoting temporal context encoding, and influencing pattern separation. In this review, we discuss strategies and findings of past computational modeling efforts, current challenges and limitations, and new computational approaches pertinent to modeling adult neurogenesis.


My home page | Home